Гиппокампе – ТАЙНЫ МОЗГА: ГИППОКАМП | Сергей Колеша

» Все о гиппокампе: функции, строение, патологии

ГАДАНИЯ ОНЛАЙН

Любим Ваши ЛАЙКИ!

24.07.2016 автор: администратор 6813 Просмотров

Все о гиппокампе: функции, строение, патологии

Гиппокамп (hippocampus) является областью в головном мозге человека, которая отвечает прежде всего за память, является частью лимбической системы, связан также с регуляцией эмоциональных ответов. Гиппокамп по форме напоминает морского конька, располагается во внутренней части височной области мозга. Гиппокамп является главным из отделов мозга по хранению долгосрочной информации. Считается также, что гиппокамп отвечает за пространственную ориентацию.

гиппокамп в человеческом мозге

гиппокамп в человеческом мозге

В гиппокампе присутствует два основных вида активности: тета-режим и большая нерегулярная активность (БНА). Тета-режимы проявляются в основном в состоянии активности, а также в период быстрого сна. При тета-режимах электроэнцефалограмма показывает наличие больших волн с диапазоном

частот от 6 до 9 Герц. При этом основная группа нейронов показывает разреженную активность, т.е. в короткие промежутки времени большинство клеток неактивны, в то время, как небольшая часть нейронов проявляет повышенную активность. В данном режиме активная клетка обладает такой активностью от полу секунды до нескольких секунд.

Hippolobes_None

БНА-режимы имеют место быть в период длинного сна, а также в период спокойного бодрствования (отдых, прием пищи).

Строение гиппокампа

У человека два гиппокампа — по одному на каждой стороне мозга. Оба гиппокампа связаны между собой комиссуральными нервными волокнами. Гиппокамп состоит из плотно уложенных клеток в ленточную структуру, которая тянется вдоль медиальной стенки нижнего рога бокового желудочка мозга в переднезаднем направлении. Основная масса нервных клеток гиппокампа это пирамидные нейроны и полиморфные клетки. В зубчатой извилине основной тип клеток это зернистые клетки. Кроме клеток указанных типов в гиппокампе присутствуют ГАМКергические вставочные нейроны, которые неимение отношение к какому-либо клеточному слою. Эти клетки содержат различные нейропептиды, кальций связывающий белок и конечно же нейромедиатор ГАМК.

Строение гиппокампа

Гиппокамп располагается под корой головного мозга и состоит из двух частей: зубчатая извилина и Аммонов рог. С анатомической стороны, гиппокамп является развитием коры головного мозга. Структуры, выстилающие границу коры мозга входят в лимбической систему. Гиппокамп анатомически связан с отделами головного мозга, отвечающими за эмоциональное поведение. Гиппокамп содержит четыре основные зоны: CA1, CA2, CA3, CA4.

@myheavengate.com Hippolobes_None гиппокамп

гиппокамп

Энторинальная кора, расположенная в парагиппокампальной извилине считается частью гиппокампа, благодаря своим анатомическим соединениям. Энторинальная кора тщательно взаимно связана с другими отделами головного мозга. Также известно, что медиальное септальное ядро, передний ядерный комплекс, объединяющее ядро таламуса, супрамаммилярное ядро гипоталамуса, ядра шва и голубое пятно в стволе головного мозга направляют аксоны в энторинальную кору. Основной выходящий путь аксонов энторинальной коры исходит из больших пирамидальных клеток слоя II, который как бы перфорирует субикулум и плотно выдаётся в зернистые клетки в зубчатой извилине, верхние дендриты CA3 получают менее плотные проекции, а апикальные дендриты CA1 получают еще более редкую проекцию. Таким образом, проводящий путь использует энторинальную кору в качестве основного связующего элемента между гиппокампом и другими частями коры головного мозга.

[ad2][/ad2]

Аксоны зубчатых зернистых клеток передают информацию из энторинальной коры на иглистых волосках, выходящих из проксимального апикального дендрита CA3 пирамидальных клеток. После чего аксоны CA3 выходят из глубокой части клеточного тела и образуют петли вверх — туда, где находятся апикальные дендриты, затем весь путь тянется назад в глубокие слои энторинальной коры в коллатерали Шаффера, завершая взаимное замыкание. Зона CA1 также посылает аксоны обратно в энторинальную кору, но в данном случае они более редкие, чем выходы CA3.

Следует отметить, что поток информации в гиппокампе из энторинальной коры значительно однонаправленный с сигналами которые распространяются через несколько плотной уложенных слой клеток, сначала к зубчатой извилине, после чего к слою CA3, затем к слою CA1, далее к субикулуму и после этого из гиппокампа к энторинальной коре, в основном обеспечивая пролегание CA3 аксонов. Каждый этот слой имеет сложную внутреннюю схему и обширные продольные соединения. Очень важный большой выходящий путь идёт в латеральную септальную зону и в маммилярное тело гипоталамуса.

Гиппокамп получает модулирующие входящие пути серотонина, дофамина и норадреналина, а также от ядер таламуса в слое CA1. Очень важная проекция идёт от медиальной септальной зоны, посылающая холинергические и габаергические волокна всем частям гиппокампа. Входы от септальной зоны имеют важнейшее значение в контроле физиологического состояния гиппокампа. Травмы и нарушения в этой зоне могут полностью прекратить тета-ритмы гиппокампа и создать серьёзные проблемы с памятью.

[ad2][/ad2]

Также в гиппокампе существуют другие соединения, которые играют очень важную роль в его функциях. На некотором расстоянии от выхода в энторинальную кору располагаются другие выходы, идущие в другие корковые области, в том числе и в префронтальную кору. Кортикальная область, прилегающая к гиппокампу носит название парагиппокампальной извилины или парагиппокамп. Парагиппокамп включает в себя энторинальную кору, перирхинальную кору, получившую своё название благодаря близкому расположению с обонятельной извилиной. Перирхинальная кора отвечает за визуальное распознавание сложных объектов. Существуют доказательства того, что парагиппокамп выполняет отдельную от самого гиппокампа функцию по запоминанию, так как только повреждение обоих гиппокампов и парагиппокампа приводит к полной потери памяти.

Функции гиппокампа

[ad2][/ad2]

Самые первые теории о роли гиппокампа в жизни человека заключались в том, что он отвечает за обоняние. Но проведенные анатомические исследования поставили эту теорию под сомнение. Дело в том, что исследования не нашли прямой связи гиппокампа с обонятельной луковицей. Но все же дальнейшие исследования показали, что обонятельная луковица имеет некоторые проекции в вентральную часть энторинальной коры, а слой CA1 в вентральной части гиппокампа посылает аксоны в основную обонятельную луковицу, переднее обонятельное ядро и в первичную обонятельную кору мозга. По прежнему не исключается определенная роль гиппокампа в обонятельных реакциях, а именно в запоминании запахов, но многие специалисты продолжают считать, что основная роль гиппокампа это обонятельная функция.

Следующая теория, которая на данный момент является основной говорит о том, что основная функция гиппокампа это формирование памяти. Эта теория многократно была доказана в ходе различных наблюдений за людьми, которые были подвержены хирургическому вмешательству в гиппокамп, либо стали жертвами несчастных случаев или болезней, так или иначе затронувших гиппокамп. Во всех случаях наблюдалась стойкая потеря памяти. Известный пример этому — пациент Генри Молисон, которому была проведена операция по удалению части гиппокампа с целью избавления от эпилептических припадков. После этой операции Генри стал страдать ретроградной амнезией. Он просто перестал запоминать события, происходящие после операции, но отлично помнил свое детство и все, что происходило до операции.

Нейробиологи и психологи единогласно соглашаются с тем, что

гиппокамп играет важную роль в формировании новых воспоминаний (эпизодическая или автобиографическая память). Некоторые исследователи расценивают гиппокамп как часть системы памяти височной доли, ответственной за общую декларативную память (воспоминания, которые могут быть явно выражены словами — включающие например, память для фактов в дополнении к эпизодической памяти). У каждого человека гиппокамп имеет двойную структуру — он расположен в обоих полушариях мозга. При повреждении например, гиппокампа в одном полушарии, мозг может сохранять почти нормальную функцию памяти.

Но при повреждении обоих частей гиппокампа возникают серьезные проблемы с новыми запоминаниями. При это более старые события человек прекрасно помнит, что говорит о том, что со временем часть памяти переходит из гиппокампа в другие отделы мозга. Следует при этом отметить, что повреждение гиппокампа не приводит к утрачиванию возможностей к осваиванию некоторых навыков, например игра на музыкальном инструменте. Это говорит о том, что такая память зависит от других отделов мозга, а не только от гиппокампа.

Проведенные многолетние исследования кроме того показали, что гиппокамп играет важную роль в пространственной ориентации. Так известно, что в гиппокампе есть области нейронов, под названием пространственные нейроны, которые чувствительны к определенным пространственным местам. Гиппокамп обеспечивает пространственную ориентацию и запоминание определенных мест в пространстве.

Патологии гиппокампа

[ad2][/ad2]

Не только такие возрастные патологии, как болезнь Альцгеймера (для которых разрушение гиппокампа является одним из ранних признаков заболевания) оказывают серьезное воздействие на многие виды восприятия, но даже обычное старение связано с постепенным снижением некоторых видов памяти, в том числе эпизодической и краткосрочной памяти. Так как гиппокамп играет важную роль в формировании памяти, ученые

связывают возрастные расстройства памяти с физическим ухудшением состояния гиппокампа. Первоначальные исследования обнаруживали значительную потерю нейронов в гиппокампе у пожилых людей, но новые исследования показали, что такие потери минимальны. Другие исследования показывали, что у пожилых людей происходит значительное уменьшение гиппокампа, но вновь проведенные аналогичные исследования такой тенденции не нашли.

Стресс, особенно хронический, может приводить к атрофии некоторых дендритов в гиппокампе. Это связано с тем, что в гиппокампе содержится большое количество глюкокортикоидных рецепторов. Из-за постоянного стресса стероиды, обусловленные им влияют на гиппокамп несколькими способами: снижают возбудимость отдельных нейронов гиппокампа, ингибируют процесс нейрогенеза в зубчатой извилине и вызывают атрофию дендритов в пирамидальных клетках зоны CA3. Проведенные исследования показали, что

у людей, которые переживали длительный стресс атрофия гиппокампа была значительно выше других областей мозга. Такие негативные процессы могут приводить к депрессии и даже к шизофрении. Атрофия гиппокампа наблюдалась у пациентов с синдромом Кушинга (высокий уровень кортизола в крови).

Эпилепсия часто связывается с гиппокампом. При эпилептических припадках часто наблюдается склероз отдельных областей гиппокампа.

Шизофрения наблюдается у людей с аномально маленьким гиппокампом. Но до настоящего времени точная связь шизофрении с гиппокампом не установлена. 

В результате внезапного застоя крови в областях мозга может возникать острая амнезия, вызванная ишемией в структурах гиппокампа.


 

 

гиппокамп

myheavengate.com

Гиппокамп — Википедия. Что такое Гиппокамп

Гиппокамп (от др.-греч. ἱππόκαμπος — морской конёк) — часть лимбической системы головного мозга (обонятельного мозга). Участвует в механизмах формирования эмоций, консолидации памяти (то есть перехода кратковременной памяти в долговременную). Генерирует тета-ритм при удержании внимания[1].

Анатомия

Расположение гиппокампа (вид с нижней стороны мозга), передняя часть мозга соответствует верхней части рисунка. Красные пятна показывают примерное положение гиппокампа в височной доле мозга.

Гиппокамп — парная структура, расположенная в медиальных височных отделах полушарий. Правый и левый гиппокампы связаны комиссуральными нервными волокнами, проходящими в спайке свода (commissura fornicis) головного мозга.

Гиппокампы образуют медиальные стенки нижних рогов боковых желудочков (лат. ventriculus lateralis), расположенных в толще полушарий большого мозга, простираются до самых передних отделов нижних рогов бокового желудочка и заканчиваются утолщениями, разделёнными мелкими бороздками на отдельные бугорки — пальцы ног морского конька (лат. digitationes hippocampi). С медиальной стороны с гиппокампом сращена бахромка гиппокампа (лат. fimbria hippocampi), являющаяся продолжением ножки свода конечного мозга. К бахромкам гиппокампа прилегают сосудистые сплетения боковых желудочков.

Функции

Гиппокамп принадлежит к одной из наиболее старых систем мозга — лимбической, чем обусловливается его значительная многофункциональность. Предположительно гиппокамп выделяет и удерживает в потоке внешних стимулов важную информацию, выполняя функцию кратковременной памяти, и функцию последующего её перевода в долговременную. Большинство исследователей согласны с тем, что гиппокамп связан с памятью, но механизм его работы ещё не ясен. Существует теория «памяти двух состояний» о том, что гиппокамп удерживает информацию в бодрствовании, и переводит её в кору больших полушарий во время сна. Ещё одной функцией гиппокампа является запоминание и кодирование окружающего пространства (пространственная память), в связи с чем он активируется всякий раз, когда необходимо удержать в фокусе внимания внешние ориентиры, определяющие вектор поведения.

При поражении гиппокампа возникает синдром Корсакова — заболевание, при котором больной при сравнительной сохранности следов долговременной памяти утрачивает память на текущие события.

Уменьшение объёма гиппокампа является одним из ранних диагностических признаков при болезни Альцгеймера.

Одной из функций гиппокампа является забывание информации. Это обусловлено тем, что гиппокамп фильтрует информацию и выбирает, что нужно сохранить, а что можно забыть.

По результатам проведенных исследований Кирсти Сполден, Джонаса Фризена и др. выяснилось, что скорость образования новых нейронов гиппокампа для взрослого человека оценивается в 1400 нейронов ежесуточно, что соответствует 1,75 % обновляющейся в течение года части гиппокампа[2] (исходя из его среднего объёма в 30 млн нейронов).

В то же время, согласно последним исследованиям нейрогенезис гиппокампа человека резко падает с возрастом, во взрослом состоянии образование новый нейронов почти не обнаруживается[3].

Роль в пространственной памяти и при ориентации

Проведенные исследования, в том числе в последнее время, показывают, что гиппокамп используется для хранения и обработки пространственной информации. Исследования на крысах показали, что в гиппокампе имеются нейроны (нейроны места), выполняющие функцию памяти о местах в пространстве. На эти нейроны проецируются расположенные в энторинальной коре нейроны направления головы, нейроны решётки, нейроны границы и нейроны скорости. Совместно эти нейроны обеспечивают ориентацию в пространстве. Нейроны места и нейроны решетки возбуждаются, когда животное обнаруживает себя в определенном месте, вне зависимости от направления движения, нейроны скорости и нейроны направления головы чувствительны к скорости движения и положению головы.

У крыс некоторые нейроны, называемые контекстно-зависимыми, могут возбуждаться в зависимости от прошлого животного (ретроспективы) или ожидаемого будущего (перспективы). Разные нейроны возбуждаются от разного местоположения животного, так что наблюдая за потенциалом отдельных нейронов, можно сказать, где, по собственному мнению, животное находится. Как оказалось, те же пространственные нейроны у человека задействованы в поиске пути во время навигации по виртуальным городам. Такие результаты были получены посредством исследования людей с имплантированными в мозг электродами, использованными в диагностических целях для хирургического лечения серьёзных приступов эпилепсии.

Открытие пространственных нейронов привело к возникновению идеи, что гиппокамп может играть роль карты — нейронного представления окружающей обстановки и местоположения в ней животного. Исследования показали, что гиппокамп необходим для решения даже простейших задач, требующих пространственной памяти (например, поиск пути к спрятанной цели). Без полностью функционирующего гиппокампа люди могут не вспомнить, где они были и как добраться до места назначения; потеря ориентации на местности — это один из самых распространенных симптомов амнезии. Томография мозга показывает, что гиппокамп наиболее активен у людей во время успешного перемещения в пространстве, как в примере с виртуальной реальностью.

Также имеются доказательства, что гиппокамп играет роль в поиске кратчайших путей между уже хорошо известными местами. К примеру, таксистам необходимо знать большое количество мест и наиболее коротких путей между ними. Исследование одного из университетов Лондона в 2003 году показало, что задняя часть гиппокампа у лондонских таксистов больше, чем у большинства людей. Помогает ли изначально большая задняя часть гиппокампа стать таксистом либо постоянный поиск кратчайшего пути приводит к ее росту — ещё не выяснено. Как бы то ни было, при исследовании корреляции между размером гиппокампа и временем работы таксистом обнаружилось, что чем больше человек работает таксистом, тем больше у него объём задней части гиппокампа. Однако было установлено, что общий объём гиппокампа остается неизменным и у контрольной группы, и таксистов: то есть задняя часть гиппокампа таксистов действительно увеличилась, но за счет передней части.

Искусственный гиппокамп

Начиная с 2003 года, в Университете Калифорнии в Лос-Анджелесе (США) группой ученых под руководством Теодора Бергера (Theodore Berger) разрабатывается искусственный гиппокамп крысы[4][5]. При моделировании предполагается, что основная функция гиппокампа — это кодирование информации для сохранения в других отделах мозга, играющих роль долговременной памяти. Предполагается также, что ввиду очень большой схожести этого отдела мозга у млекопитающих адаптация к функции гиппокампа человека будет произведена достаточно быстро. Так как ученым были неизвестны методы кодирования, гиппокамп был смоделирован как совокупность нейронных сетей, функционирующих параллельно. Выдвинута гипотеза, что такое предположительное строение настоящего гиппокампа дает возможность при травме обойти поврежденную область целиком. Конструктивно аналог гиппокампа выполнен в виде компьютерного чипа с двумя пучками электродов: входным — для регистрации электрической активности других отделов мозга и выходным — для направления электрических сигналов в мозг.

В августе 2006 года начато создание математической модели гиппокампа крысы. К декабрю 2010 года исследователи из Института Южной Калифорнии совместно с коллегами из Университета Уэйк Форест разработали и протестировали схему[6][7], заменяющую гиппокамп крысы. Исследователи смогли заставить крысу запоминать те или иные действия. Более того, протез гиппокампа смог улучшить способности мозга крысы при одновременной работе с естественным гиппокампом. Профессор Теодор Бергер предвкушает создание искусственного гиппокампа человека к 2025 году. Но сначала необходимо создать и испытать соответствующий протез на мозге обезьяны.

Примечания

  1. Когда внимание захвачено одной-единственной мишенью, когда она удерживается в памяти, во внутреннем фокусе, то в коре появляется тета-ритм, который навязал ей гиппокамп.

  2. ↑ Dynamics of Hippocampal Neurogenesis in Adult Humans 6 June 2013.
  3. Shawn F. Sorrells, Mercedes F. Paredes, Arantxa Cebrian-Silla, Kadellyn Sandoval, Dashi Qi. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults (En) // Nature. — 2018/03. — Т. 555, вып. 7696. — С. 377–381. — ISSN 1476-4687. — DOI:10.1038/nature25975.
  4. ↑ Duncan Graham-Rowe.The world’s first brain prosthesis,15 March 2003,Magazine issue 2386
  5. Создан первый в мире протез мозга, cnews.ru, 14.03.2003. Архивная копия от 18 мая 2015 на Wayback Machine
  6. ↑ A cortical neural prosthesis for restoring and enhancing memory, 8 ноября 2010 (публ. 15 июня 2011).
  7. ↑ Учёные поселили в мозгу крыс электронную память, 23 июня 2011.

Литература

  • Гиппокамп // Физиология человека / под ред. В. М. Покровского, Г. Ф. Коротько.

Ссылки

wiki.sc

Гиппокамп — Википедия

У этого термина существуют и другие значения, см. гиппокампус.

Гиппокамп (от др.-греч. ἱππόκαμπος — морской конёк) — часть лимбической системы головного мозга (обонятельного мозга). Участвует в механизмах формирования эмоций, консолидации памяти (то есть перехода кратковременной памяти в долговременную). Генерирует тета-ритм при удержании внимания[1].

Анатомия

Расположение гиппокампа (вид с нижней стороны мозга), передняя часть мозга соответствует верхней части рисунка. Красные пятна показывают примерное положение гиппокампа в височной доле мозга.

Гиппокамп — парная структура, расположенная в медиальных височных отделах полушарий. Правый и левый гиппокампы связаны комиссуральными нервными волокнами, проходящими в спайке свода (commissura fornicis) головного мозга.

Гиппокампы образуют медиальные стенки нижних рогов боковых желудочков (лат. ventriculus lateralis), расположенных в толще полушарий большого мозга, простираются до самых передних отделов нижних рогов бокового желудочка и заканчиваются утолщениями, разделёнными мелкими бороздками на отдельные бугорки — пальцы ног морского конька (лат. digitationes hippocampi). С медиальной стороны с гиппокампом сращена бахромка гиппокампа (лат. fimbria hippocampi), являющаяся продолжением ножки свода конечного мозга. К бахромкам гиппокампа прилегают сосудистые сплетения боковых желудочков.

Функции

Гиппокамп принадлежит к одной из наиболее старых систем мозга — лимбической, чем обусловливается его значительная многофункциональность. Предположительно гиппокамп выделяет и удерживает в потоке внешних стимулов важную информацию, выполняя функцию кратковременной памяти, и функцию последующего её перевода в долговременную. Большинство исследователей согласны с тем, что гиппокамп связан с памятью, но механизм его работы ещё не ясен. Существует теория «памяти двух состояний» о том, что гиппокамп удерживает информацию в бодрствовании, и переводит её в кору больших полушарий во время сна. Ещё одной функцией гиппокампа является запоминание и кодирование окружающего пространства (пространственная память), в связи с чем он активируется всякий раз, когда необходимо удержать в фокусе внимания внешние ориентиры, определяющие вектор поведения.

При поражении гиппокампа возникает синдром Корсакова — заболевание, при котором больной при сравнительной сохранности следов долговременной памяти утрачивает память на текущие события.

Уменьшение объёма гиппокампа является одним из ранних диагностических признаков при болезни Альцгеймера.

Одной из функций гиппокампа является забывание информации. Это обусловлено тем, что гиппокамп фильтрует информацию и выбирает, что нужно сохранить, а что можно забыть.

По результатам проведенных исследований Кирсти Сполден, Джонаса Фризена и др. выяснилось, что скорость образования новых нейронов гиппокампа для взрослого человека оценивается в 1400 нейронов ежесуточно, что соответствует 1,75 % обновляющейся в течение года части гиппокампа[2] (исходя из его среднего объёма в 30 млн нейронов).

В то же время, согласно последним исследованиям нейрогенезис гиппокампа человека резко падает с возрастом, во взрослом состоянии образование новых нейронов почти не обнаруживается[3].

Роль в пространственной памяти и при ориентации

Проведенные исследования, в том числе в последнее время, показывают, что гиппокамп используется для хранения и обработки пространственной информации. Исследования на крысах показали, что в гиппокампе имеются нейроны (нейроны места), выполняющие функцию памяти о местах в пространстве. На эти нейроны проецируются расположенные в энторинальной коре нейроны направления головы, нейроны решётки, нейроны границы и нейроны скорости. Совместно эти нейроны обеспечивают ориентацию в пространстве. Нейроны места и нейроны решетки возбуждаются, когда животное обнаруживает себя в определенном месте, вне зависимости от направления движения, нейроны скорости и нейроны направления головы чувствительны к скорости движения и положению головы.

У крыс некоторые нейроны, называемые контекстно-зависимыми, могут возбуждаться в зависимости от прошлого животного (ретроспективы) или ожидаемого будущего (перспективы). Разные нейроны возбуждаются от разного местоположения животного, так что наблюдая за потенциалом отдельных нейронов, можно сказать, где, по собственному мнению, животное находится. Как оказалось, те же пространственные нейроны у человека задействованы в поиске пути во время навигации по виртуальным городам. Такие результаты были получены посредством исследования людей с имплантированными в мозг электродами, использованными в диагностических целях для хирургического лечения серьёзных приступов эпилепсии.

Открытие пространственных нейронов привело к возникновению идеи, что гиппокамп может играть роль карты — нейронного представления окружающей обстановки и местоположения в ней животного. Исследования показали, что гиппокамп необходим для решения даже простейших задач, требующих пространственной памяти (например, поиск пути к спрятанной цели). Без полностью функционирующего гиппокампа люди могут не вспомнить, где они были и как добраться до места назначения; потеря ориентации на местности — это один из самых распространенных симптомов амнезии. Томография мозга показывает, что гиппокамп наиболее активен у людей во время успешного перемещения в пространстве, как в примере с виртуальной реальностью.

Также имеются доказательства, что гиппокамп играет роль в поиске кратчайших путей между уже хорошо известными местами. К примеру, таксистам необходимо знать большое количество мест и наиболее коротких путей между ними. Исследование одного из университетов Лондона в 2003 году показало, что задняя часть гиппокампа у лондонских таксистов больше, чем у большинства людей. Помогает ли изначально большая задняя часть гиппокампа стать таксистом либо постоянный поиск кратчайшего пути приводит к ее росту — ещё не выяснено. Как бы то ни было, при исследовании корреляции между размером гиппокампа и временем работы таксистом обнаружилось, что чем больше человек работает таксистом, тем больше у него объём задней части гиппокампа. Однако было установлено, что общий объём гиппокампа остается неизменным и у контрольной группы, и таксистов: то есть задняя часть гиппокампа таксистов действительно увеличилась, но за счет передней части.

Искусственный гиппокамп

Начиная с 2003 года, в Университете Калифорнии в Лос-Анджелесе (США) группой ученых под руководством Теодора Бергера (Theodore Berger) разрабатывается искусственный гиппокамп крысы[4][5]. При моделировании предполагается, что основная функция гиппокампа — это кодирование информации для сохранения в других отделах мозга, играющих роль долговременной памяти. Предполагается также, что ввиду очень большой схожести этого отдела мозга у млекопитающих адаптация к функции гиппокампа человека будет произведена достаточно быстро. Так как ученым были неизвестны методы кодирования, гиппокамп был смоделирован как совокупность нейронных сетей, функционирующих параллельно. Выдвинута гипотеза, что такое предположительное строение настоящего гиппокампа дает возможность при травме обойти поврежденную область целиком. Конструктивно аналог гиппокампа выполнен в виде компьютерного чипа с двумя пучками электродов: входным — для регистрации электрической активности других отделов мозга и выходным — для направления электрических сигналов в мозг.

В августе 2006 года начато создание математической модели гиппокампа крысы. К декабрю 2010 года исследователи из Института Южной Калифорнии совместно с коллегами из Университета Уэйк Форест разработали и протестировали схему[6][7], заменяющую гиппокамп крысы. Исследователи смогли заставить крысу запоминать те или иные действия. Более того, протез гиппокампа смог улучшить способности мозга крысы при одновременной работе с естественным гиппокампом. Профессор Теодор Бергер предвкушает создание искусственного гиппокампа человека к 2025 году. Но сначала необходимо создать и испытать соответствующий протез на мозге обезьяны.

Примечания

  1. Когда внимание захвачено одной-единственной мишенью, когда она удерживается в памяти, во внутреннем фокусе, то в коре появляется тета-ритм, который навязал ей гиппокамп.

  2. ↑ Dynamics of Hippocampal Neurogenesis in Adult Humans 6 June 2013.
  3. Shawn F. Sorrells, Mercedes F. Paredes, Arantxa Cebrian-Silla, Kadellyn Sandoval, Dashi Qi. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults (En) // Nature. — 2018/03. — Т. 555, вып. 7696. — С. 377–381. — ISSN 1476-4687. — DOI:10.1038/nature25975.
  4. ↑ Duncan Graham-Rowe.The world’s first brain prosthesis,15 March 2003,Magazine issue 2386
  5. Создан первый в мире протез мозга, cnews.ru, 14.03.2003. Архивная копия от 18 мая 2015 на Wayback Machine
  6. ↑ A cortical neural prosthesis for restoring and enhancing memory, 8 ноября 2010 (публ. 15 июня 2011).
  7. ↑ Учёные поселили в мозгу крыс электронную память, 23 июня 2011.

Литература

  • Гиппокамп // Физиология человека / под ред. В. М. Покровского, Г. Ф. Коротько.

Ссылки

wikipedia.green

Гиппокамп — Медицинская википедия

У этого термина существуют и другие значения, см. гиппокампус.

Гиппокамп (от др.-греч. ἱππόκαμπος — морской конёк) — часть лимбической системы головного мозга (обонятельного мозга). Участвует в механизмах формирования эмоций, консолидации памяти (то есть перехода кратковременной памяти в долговременную). Генерирует тета-ритм при удержании внимания.

Анатомия

Файл:Hippocampus.png

Расположение гиппокампа (вид с нижней стороны мозга), передняя часть мозга соответствует верхней части рисунка. Красные пятна показывают примерное положение гиппокампа в височной доле мозга.

Гиппокамп — парная структура, расположенная в медиальных височных отделах полушарий. Правый и левый гиппокампы связаны комиссуральными нервными волокнами, проходящими в спайке свода (commissura fornicis) головного мозга.

Гиппокампы образуют медиальные стенки нижних рогов боковых желудочков (лат. ventriculus lateralis), расположенных в толще полушарий большого мозга, простираются до самых передних отделов нижних рогов бокового желудочка и заканчиваются утолщениями, разделёнными мелкими бороздками на отдельные бугорки — пальцы ног морского конька (лат. digitationes hippocampi). С медиальной стороны с гиппокампом сращена бахромка гиппокампа (лат. fimbria hippocampi), являющаяся продолжением ножки свода конечного мозга. К бахромкам гиппокампа прилегают сосудистые сплетения боковых желудочков.

Функции

Гиппокамп принадлежит к одной из наиболее старых систем мозга — лимбической, чем обусловливается его значительная многофункциональность. Предположительно гиппокамп выделяет и удерживает в потоке внешних стимулов важную информацию, выполняя функцию хранилища кратковременной памяти, как ОЗУ компьютера, и функцию последующего её перевода в долговременную. Большинство исследователей согласны с тем, что гиппокамп связан с памятью, но механизм его работы ещё не ясен. Существует теория «памяти двух состояний» о том, что гиппокамп удерживает информацию в бодрствовании, и переводит её в кору больших полушарий во время сна. Ещё одной функцией гиппокампа является запоминание и кодирование окружающего пространства (пространственная память). В связи с чем он активируется всякий раз, когда необходимо удержать в фокусе внимания внешние ориентиры, определяющие вектор поведения.

При поражении гиппокампа возникает синдром Корсакова — заболевание, при котором больной при сравнительной сохранности следов долговременной памяти утрачивает память на текущие события.

Уменьшение объёма гиппокампа является одним из ранних диагностических признаков при болезни Альцгеймера.

По результатам проведенных исследований Кирсти Сполден, Джонаса Фризена и др. выяснилось, что скорость образования новых нейронов гиппокампа для взрослого человека оценивается в 1400 нейронов ежесуточно, что соответствует 1.75% обновляющейся в течение года части гиппокампа (исходя из его среднего объёма в 30 млн нейронов).

Роль в пространственной памяти и при ориентации

Имеющиеся факты свидетельствуют, что гиппокамп используется для хранения и обработки пространственной информации. Исследования на крысах показали, что нейроны гиппокампа имеют области, чувствительные к положению в пространстве. Эти нейроны называются пространственными клетками (place cells). Некоторые из этих клеток возбуждаются, когда животное обнаруживает себя в определенном месте, вне зависимости от направления движения, большинство же — по меньшей мере частично чувствительны к направлению движения и положению головы.

У крыс некоторые клетки, называемые контекстно-зависимые клетки, могут возбуждаться в зависимости от прошлого животного (ретроспективы) или ожидаемого будущего (перспективы). Разные клетки возбуждаются от разного местоположения животного, так что наблюдая за потенциалом отдельных клеток, можно сказать, где по собственному мнению животное находится. Как оказалось, те же пространственные клетки у человека задействованы в поиске пути во время навигации по виртуальным городам. Такие результаты были получены посредством исследования людей с имплантированными в мозг электродами, использованными в диагностических целях для хирургического лечения серьёзных приступов эпилепсии.

Открытие пространственных клеток привело к возникновению идеи, что гиппокамп может играть роль карты — нейронного представления окружающей обстановки и местоположения в ней животного. Исследования показали, что гиппокамп необходим для решения даже простейших задач, требующих пространственной памяти (например, поиск пути к спрятанной цели). Без полностью функционирующего гиппокампа, люди могут не вспомнить, где они были и как добраться до места назначения; потеря ориентации в местности — это один из самых распространенных симптомов амнезии. Томография мозга показывает, что гиппокамп наиболее активен у людей во время успешного перемещения в пространстве, как в примере с виртуальной реальностью.

Также имеются доказательства, что гиппокамп играет роль в поиске кратчайших путей между уже хорошо известными местами. К примеру, таксистам из Лондона необходимо знать большое количество мест и наиболее коротких путей между ними. Исследования одного из университетов Лондона в 2003 году показало, что гиппокамп у таксистов больше, чем у большинства людей, и что наиболее опытные таксисты имеют больший гиппокамп. Помогает ли изначально больший гиппокамп стать таксистом, либо постоянный поиск кратчайшего пути приводит к его росту — ещё не выяснено. Как бы то ни было, во время исследования корреляции между размером серого вещества и временем работы таксистом обнаружилось, что чем больше человек работает таксистом, тем больше у него объём правой части гиппокампа. Было установлено, что общий объём гиппокампа остается неизменным и у контрольной группы, и таксистов. Короче говоря, задняя часть гиппокампа таксистов действительно увеличилась, но за счет передней части.

Искусственный гиппокамп

Начиная с 2003 года, в Университете Калифорнии в Лос-Анджелесе (США) группой ученых под руководством Теодора Бергера (Theodore Berger) разрабатывается искусственный гиппокамп крысы. При моделировании предполагается, что основная функция гиппокампа — это кодирование информации для сохранения в других отделах мозга, играющих роль долговременной памяти. Предполагается также, что ввиду очень большой схожести этого отдела мозга у млекопитающих адаптация к функции гиппокампа человека будет произведена достаточно быстро. Так как ученым были неизвестны методы кодирования, то он был смоделирован как совокупность нейронных сетей, функционирующих параллельно. Выдвинута гипотеза, что такое возможное строение уже настоящего гиппокампа дает возможность при травме обойти поврежденную область целиком. Конструктивно аналог гиппокампа выполнен в виде компьютерного чипа с двумя пучками электродов: входным — для регистрации электрической активности других отделов мозга и выходным — для направления электрических сигналов в мозг.

В августе 2006 года начато создание математической модели гиппокампа крысы. К декабрю 2010 года исследователи из Института Южной Калифонии совместно с коллегами из Университета Уэйк Форест разработали и протестировали схему, заменяющую гиппокамп крысы. Исследователи смогли заставить крысу запоминать те или иные действия. Более того, протез гиппокампа смог улучшить способности мозга крысы при одновременной работе с естественным гиппокампом. Профессор Теодор Бергер предвкушает создание искусственного гиппокампа человека к 2025 году. Но сначала необходимо создать и испытать соответствующий протез на мозге обезьяны.

Шаблон:Лимбическая система

medviki.com

Гиппокамп — Medside.ru

Закрыть
  • Болезни
    • Инфекционные и паразитарные болезни
    • Новообразования
    • Болезни крови и кроветворных органов
    • Болезни эндокринной системы
    • Психические расстройства
    • Болезни нервной системы
    • Болезни глаза
    • Болезни уха
    • Болезни системы кровообращения
    • Болезни органов дыхания
    • Болезни органов пищеварения
    • Болезни кожи
    • Болезни костно-мышечной системы
    • Болезни мочеполовой системы
    • Беременность и роды
    • Болезни плода и новорожденного
    • Врожденные аномалии (пороки развития)
    • Травмы и отравления
  • Симптомы
    • Системы кровообращения и дыхания
    • Система пищеварения и брюшная полость
    • Кожа и подкожная клетчатка
    • Нервная и костно-мышечная системы
    • Мочевая система
    • Восприятие и поведение
    • Речь и голос
    • Общие симптомы и признаки
    • Отклонения от нормы
  • Диеты
    • Снижение веса
    • Лечебные
    • Быстрые
    • Для красоты и здоровья
    • Разгрузочные дни
    • От профессионалов
    • Монодиеты
    • Звездные
    • На кашах
    • Овощные
    • Детокс-диеты
    • Фруктовые
    • Модные
    • Для мужчин
    • Набор веса
    • Вегетарианство
    • Национальные
  • Лекарства
    • Антибиотики
    • Антисептики
    • Биологически активные добавки
    • Витамины
    • Гинекологические
    • Гормональные
    • Дерматологические
    • Диабетические
    • Для глаз
    • Для крови
    • Для нервной системы
    • Для печени
    • Для повышения потенции
    • Для полости рта
    • Для похудения
    • Для суставов
    • Для ушей
    • Желудочно-кишечные
    • Кардиологические
    • Контрацептивы
    • Мочегонные
    • Обезболивающие
    • От аллергии
    • От кашля
    • От насморка
    • Повышение иммунитета
    • Противовирусные
    • Противогрибковые
    • Противомикробные
    • Противоопухолевые
    • Противопаразитарные
    • Противопростудные
    • Сердечно-сосудистые
    • Урологические
    • Другие лекарства
    ДЕЙСТВУЮЩИЕ ВЕЩЕСТВА
  • Врачи
  • Клиники
  • Справочник
    • Аллергология
    • Анализы и диагностика
    • Беременность
    • Витамины
    • Вредные привычки
    • Геронтология (Старение)
    • Дерматология
    • Дети
    • Женское здоровье
    • Инфекция
    • Контрацепция
    • Косметология
    • Народная медицина
    • Обзоры заболеваний
    • Обзоры лекарств
    • Ортопедия и травматология
    • Питание
    • Пластическая хирургия
    • Процедуры и операции
    • Психология
    • Роды и послеродовый период
    • Сексология
    • Стоматология
    • Травы и продукты
    • Трихология
    • Другие статьи
  • Словарь терминов
    • [А] Абазия .. Ацидоз
    • [Б] Базофилы .. Булимия
    • [В] Вазектомия .. Выкидыш
    • [Г] Галлюциногены .. Грязи лечебные
    • [Д] Дарсонвализация .. Дофамин
    • [Е] Еюноскопия
    • [Ж] Железы .. Жиры
    • [З] Заместительная гормональная терапия
    • [И] Игольный тест .. Искусственная кома
    • [К] Каверна .. Кумарин

medside.ru

Гіпокамп — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Гіпокамп (від грец. Hippocampos — міфологічний кінь гіпокамп або морський коник) — частина лімбічної системи головного мозку (нюхального мозку). Бере участь в механізмах формування емоцій та консолідації пам’яті, тобто переходу короткочасної пам’яті в довготривалу[1][2].

Зменшення об’єму гіпокампу — одна з ранніх діагностичних ознак хвороби Альцгеймера. Гіпокамп впливає також на процес сну.

Роль у просторовій пам’яті й при орієнтації[ред. | ред. код]

Наявні факти свідчать, що гіпокамп використовується для зберігання та обробки просторової інформації. Дослідження на щурах показали, що нейрони гіпокампу мають області, чутливі до положення в просторі. Ці нейрони називаються просторовими клітинами (place cells). Деякі з цих клітин збуджуються, коли тварина виявляє себе в певному місці, незалежно від напрямку руху, більшість же — щонайменше частково чутливі до напрямку руху і положенню голови.

У щурів деякі клітини, звані контекстно-залежні клітини, можуть збуджуватися залежно від минулого тварини (ретроспективи) або очікуваного майбутнього (перспективи). Різні клітини збуджуються від різного розташування тварини, так що спостерігаючи за потенціалом окремих клітин, можна сказати, де тварина знаходиться (або думає, що знаходиться там). Як виявилося, ті ж просторові клітини у людини задіяні в пошуку шляху під час навігації по віртуальних місцях. Такі результати були отримані за допомогою дослідження людей з імплантованими в мозок електродами, використаними в діагностичних цілях для хірургічного лікування серйозних нападів епілепсії.

Відкриття просторових клітин призвело до виникнення ідеї, що гіпокамп може грати роль карти — нейронного подання навколишнього оточення і місця розташування в ній тварини. Дослідження показали, що гіпокамп необхідний для вирішення навіть найпростіших завдань, що вимагають просторової пам’яті (наприклад, пошук шляху до захованої мети). Без повністю функціонуючого гіпокампу, люди можуть не згадати, де вони були і як дістатися до місця призначення; втрата орієнтації в місцевості — це один з найпоширеніших симптомів амнезії. Томографія мозку показує, що гіпокамп найбільш активний у людей під час успішного переміщення в просторі, як у прикладі з віртуальною реальністю.

Також є докази, що гіпокамп грає роль у пошуку найкоротших шляхів між вже добре відомими місцями. Наприклад, таксистам із Лондона необхідно знати велику кількість місць і найбільш короткі шляхи між ними. Дослідження одного з університетів Лондона в 2003 році показало, що гіпокамп у таксистів більше, ніж у більшості людей, і що найбільш досвідчені таксисти мають більший гіпокамп. Чи допомагає спочатку більший гіпокамп стати таксистом, або постійний пошук найкоротшого шляху призводить до його зростання — ще не з’ясоване. Як би то не було, під час дослідження кореляції між розміром сірої речовини і часом роботи таксистом виявилося, що чим більше людина працює таксистом, тим більший у неї обсяг правої частини гіпокампу. Було встановлено, що загальний обсяг гіпокампа залишається незмінним і у контрольної групи, і таксистів. Коротко кажучи, задня частина гіпокампу таксистів дійсно збільшилася, але за рахунок передньої частини. Ці дослідження наводять на думку, що гіпокамп з часом збільшується в розмірах у міру зростання його використання[3].

  1. ↑ Неттер Ф. (2004). Атлас анатомії людини [Цегельский А.А.]. Львів: Наутілус. с. 592. ISBN 966-95745-8-7. 
  2. Human Anatomy & Physiology (вид. 7th). Benjamin Cummings. 2006. ISBN 978-0805359091. 
  3. Гіпокамп

uk.wikipedia.org

Эксперименты на гиппокампе показали, как улучшать или подавлять память — Naked Science

Ученые заметили, что верхняя и нижняя части гиппокампа ответственны за разные воспоминания.

Биологи из Бостонского университета провели эксперименты на мышах, которые показали, что верхняя и нижняя части гиппокампа отвечают за разные по эмоциональной окраске воспоминания. Работа опубликована в журнале Current Biology.

 

Гиппокамп — зона мозга, относящаяся к лимбической системе. Она участвует в формировании эмоций и консолидации памяти. Ранее исследователи из Уппсальского университета (Швеция) в сотрудничестве с бразильскими учеными показали, что так называемые интернейроны oriens lacunosum-moleculare (OLM) в гиппокампе играют важную роль в процессе обучения, а воздействия на них могут регулировать успешность обучения. Кроме того, в этой области есть клетки, которые отвечают за восприятие коротких промежутков времени. Изучение ее функций продолжается. Теперь ученые из США продемонстрировали, что есть разница между дорсальной (верхней) и вентральной (нижней) частями гиппокампа мыши.

 

Применив методику оптогенетики и вырастив мышей со светящимися белками, активирующимися при работе нейрона, авторы поставили эксперименты на грызунах. Сперва они подвергали животных разным стимулам: негативному (слабые электрические разряды), нейтральному и позитивному (ухаживание за самкой). В это время они наблюдали, какие нейроны активировались. Ученые заметили, что в первом и последнем случаях вступали в работу разные части гиппокампа.

 

Чтобы проверить гипотезу, они активировали светом верхнюю и нижнюю области гиппокампа. В последнем случае у мышей запускалась форма тревожного поведения с демонстрацией страха. Стимуляция дорсальной части, наоборот, снижала уровень тревоги и беспокойства. Авторы предполагают, что разные участки гиппокампа могут соотноситься с разными по эмоциональной окраске воспоминаниями. Если это предположение верно, тогда активизация той или иной части может подавлять или укреплять воспоминания. Сотрудники Бостонского университета видят в этом открытии путь к новому методу лечения посттравматического стрессового расстройства.

 

В прошлом году исследователи из Калифорнийского университета в Сан-Диего провели эксперименты с участием людей, обладающих нарушениями в работе височной доли мозга. Они показали связь между нормальным функционированием гиппокампа и сознательной памятью.

Скопировать ссылку

naked-science.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о