Какие бывают нейроны – Нейроны головного мозга, нейроциты и нейронные связи

Содержание

Нейроны – что это. Виды и функции нейронов головного мозга

О неисчерпаемых возможностях нашего мозга написаны горы литературы. Он способен перерабатывать огромное количество информации, которое не под силу даже современным компьютерам. Более того, мозг в нормальных условиях работает без перебоев в течение 70-80 и более лет. И с каждым годом продолжительность его жизни, а значит, и жизни человека все увеличивается.

Эффективную работу этого важнейшего и во многом таинственного органа обеспечивают в основном два вида клеток: нейроны и глиальные. Именно нейроны отвечают за получение и обработку информации, память, внимание, мышление, воображение и творчество.

Нейрон и его строение

Часто можно слышать, что умственные способности человека гарантирует наличие серого вещества. Что это за вещество и почему оно серое? Такой цвет имеет кора головного мозга, состоящая из микроскопических клеток. Это нейроны или нервные клетки, которые обеспечивают работу нашего мозга и управление всем организмом человека.

Как устроена нервная клетка

Нейрон, как и любая живая клетка, состоит из ядра и клеточного тела, которое называют сома. Размер самой клетки микроскопический – от 3 до 100 мкм. Однако это не мешает нейрону быть настоящим хранилищем разнообразной информации. Каждая нервная клетка содержит в себе полный набор генов – инструкций по производству белков. Одни из белков участвуют в передаче информации, другие создают защитную оболочку вокруг самой клетки, третьи участвуют в процессах памяти, четвертые обеспечивают смену настроения и т. д.

Даже небольшой сбой в одной из программ по производству какого-то белка может привести к тяжелым последствиям, заболеванию, нарушению психической деятельности, слабоумию и т. д.

Каждый нейрон окружен защитной оболочкой из глиальных клеток, они буквально заполняют все межклеточное пространство и составляют 40 % от вещества головного мозга. Глия или совокупность глиальных клеток выполняет очень важные функции: защищает нейроны от неблагополучных внешних воздействий, поставляет нервным клеткам питательные вещества и выводит продукты их жизнедеятельности.

Глиальные клетки стоят на страже здоровья и целостности нейронов, поэтому не допускают проникновение в нервные клетки многих посторонних химических веществ. В том числе и лекарственных препаратов. Поэтому эффективность различных лекарств, призванных усилить деятельность мозга, совершенно непредсказуема, и действуют они по-разному на каждого человека.

Дендриты и аксоны

Несмотря на сложность устройства нейрона, сам по себе он не играет существенной роли в работе мозга. Наша нервная деятельность, в том числе мыслительная активность – это результат взаимодействия множества нейронов, обменивающихся сигналами. Прием и передача этих сигналов, точнее, слабых электрических импульсов происходит с помощью нервных волокон.

Нейрон имеет несколько коротких (около 1 мм) разветвленных нервных волокон – дендритов, названных так из-за схожести с деревом. Дендриты отвечают за прием сигналов от других нервных клеток. А в качестве передатчика сигналов выступает аксон. Это волокно у нейрона только одно, зато оно может достигать в длину до 1,5 метров. Соединяясь с помощью аксонов и дендритов, нервные клетки образуют целые нейронные сети. И чем сложнее система взаимосвязей, тем сложнее наша психическая деятельность.

Работа нейрона

В основе сложнейшей деятельности нашей нервной системы – обмен слабыми электрическими импульсами между нейронами. Но проблема в том, что изначально аксон одной нервной клетки и дендриты другой не соединены, между ними находится пространство, заполненное межклеточным веществом. Это так называемая синаптическая щель, и преодолеть ее сигнал не может. Представьте, что два человека тянут друг к другу руки и совсем чуть-чуть не дотягиваются.

Эта проблема решается нейроном просто. Под воздействием слабого электрического тока возникает электрохимическая реакция и формируется белковая молекула – нейротрансмиттер. Эта молекула и перекрывает синаптическую щель, став своеобразным мостиком для прохождения сигнала. Нейротрансмиттеры выполняют и еще одну функцию – они связывают нейроны, и чем чаще проходит сигнал по этой нервной цепи, тем сильнее эта связь. Представьте брод через реку. Проходя по нему, человек бросает в воду камень, и затем каждый следующий путник поступает так же. В результате возникает прочный, надежный переход.

Такое соединение между нейронами называют синапсом, и оно играет важную роль в деятельности мозга. Считается, что даже наша память – это результат работы синапсов. Эти связи обеспечивают большую скорость прохождения нервных импульсов – сигнал по цепи нейронов движется со скоростью 360 км/час или 100 м/сек. Можно посчитать, за какое время в головной мозг попадет сигнал от пальца, который вы случайно укололи иголкой. Есть старая загадка: «Что быстрее всего на свете?». Ответ: «Мысль». И это очень было точно подмечено.

Виды нейронов

Нейроны находятся не только в головном мозге, где они, взаимодействуя, образуют центральную нервную систему. Нейроны расположены во всех органах нашего тела, в мышцах и связках на поверхности кожи. Особенно много их в рецепторах, то есть органах чувств. Разветвленная сеть нервных клеток, которая пронизывает все тело человека – это периферическая нервная система, которая выполняет не менее важные функции, чем центральная. Все разнообразие нейронов разделяют на три основных группы:

  • Аффекторные нейроны получают информацию от органов чувств и в виде импульсов по нервным волокнам поставляют ее к головному мозгу. Эти нервные клетки имеют самые длинные аксоны, так как их тело находится в соответствующем отделе головного мозга. Существует строгая специализация, и звуковые сигналы поступают исключительно в слуховой отдел мозга, запахи – в обонятельный, световые – в зрительный и т. д.
  • Промежуточные или вставочные нейроны занимаются обработкой информации, поступившей от аффекторов. После того как информация оценена, промежуточные нейроны подают команду расположенным на периферии нашего тела органам чувств и мышцам.
  • Эфферентные или эффекторные нейроны передают эту команду от промежуточных в виде нервного импульса к органам, мышцам и т. д.

Самой сложной и наименее понятной является работа промежуточных нейронов. Они отвечают не только за рефлекторные реакции, такие, например, как отдергивание руки от горячей сковородки или моргание при вспышке света. Эти нервные клетки обеспечивают такие сложнейшие психические процессы, как мышление, воображение, творчество. И как мгновенный обмен нервными импульсами между нейронами превращается в яркие образы, фантастические сюжеты, гениальные открытия, да и просто в размышления о тяжелом понедельнике? Это главная тайна головного мозга, к разгадке которой ученые даже пока не приблизились.

Единственное, что удалось выяснить, что разные виды мыслительной деятельности связаны с активностью разных групп нейронов. Мечты о будущем, заучивание стихотворения, восприятие близкого человека, обдумывание покупок – все это отражается в нашем мозге как вспышки активности нервных клеток в различных точках коры головного мозга.

Функции нейронов

Учитывая, что нейроны обеспечивают работу всех систем организма, функции нервных клеток должны быть очень разнообразны. К тому же все они пока еще даже до конца и не выяснены. Среди множества различных классификаций этих функций мы выберем одну, наиболее понятную и близкую к проблемам психологической науки.

Функция передачи информации

Это основная функция нейронов, с которой связаны и другие, хоть и не менее значимые. Эта же функция является и наиболее изученной. Все внешние сигналы, поступающие на органы, попадают в головной мозг, где обрабатываются. А затем в результате обратной связи в виде импульсов-команд переносятся по эфферентным нервным волокнам обратно к органам чувств, мышцам и т. д.

Такая постоянная циркуляция информации происходит не только на уровне периферической нервной системы, но и в головном мозге. Связи между нейронами, обменивающимися информацией, образуют необычайно сложные нейронные сети. Представьте только: в головном мозге насчитывается не менее 30 млрд нейронов, и каждый из них может иметь до 10 тысяч связей. В середине XX века кибернетики пытались создать электронную вычислительную машину, работающую по принципу головного мозга человека. Но это им не удалось – процессы, происходящие в центральной нервной системе, оказались слишком сложными.

Функция сохранения опыта

Нейроны отвечают за то, что мы называем памятью. Точнее, как выяснили нейрофизиологи, сохранение следов проходивших по нейронным цепям сигналов является своеобразным побочным эффектом деятельности мозга. Основа памяти – это те самые белковые молекулы – нейротрансмиттеры, которые возникают в качестве связующих мостиков между нервными клетками. Поэтому специального отдела мозга, отвечающего за хранение информации, нет. А если вследствие травмы или болезни происходит разрушение нервных связей, то человек может частично утратить память.

Интегративная функция

Это обеспечение взаимодействия между разными отделами головного мозга. Мгновенные «вспышки» передающихся и принимающихся сигналов, очаги повышенного возбуждения в коре головного мозга – это и есть рождение образов, чувств и мыслей. Сложные нервные связи, объединяющие между собой различные участки коры больших полушарий и проникающие в подкорковую зону, являются продуктом нашей психической деятельности. И чем больше возникает таких связей, тем лучше память и продуктивнее мышление. То есть, по сути, чем больше мы думаем, тем умнее становимся.

Функция производства белков

Деятельность нервных клеток не ограничивается информационными процессами. Нейроны – это настоящие фабрики белков. Это те самые нейротрансмиттеры, которые не только выполняют функцию «мостика» между нейронами, но и играют огромную роль в регуляции работы нашего организма в целом. В настоящее время насчитывается около 80 видов этих белковых соединений, выполняющих разнообразные функции:

  • Норадреналин, иногда его называют гормоном ярости или стресса. Он тонизирует организм, повышает работоспособность, заставляет чаще биться сердце и готовит организм к немедленным действиям по отражению опасности.
  • Допамин – это главный тоник нашего организма. Он участвует в активизации деятельности всех систем, в том числе во время пробуждения, при физических нагрузках и создает положительный эмоциональный настрой вплоть до эйфории.
  • Серотонин – это тоже вещество «хорошего настроения», хоть на физическую активность оно и не влияет.
  • Глутамат – трансмиттер, необходимый для работы памяти, без него невозможно долгосрочное хранение информации.
  • Ацетилхолин управляет процессами сна и пробуждения, а также необходим для активизации внимания.

Нейротрансмиттеры, точнее их количество, влияют на здоровье организма. И если возникают какие-то проблемы с выработкой этих белковых молекул, то могут развиться серьезные заболевания. Например, недостаток допамина – это одна из причин болезни Паркинсона, а если этого вещества вырабатывается слишком много, то может развиться шизофрения. Если же недостаточно вырабатывается ацетилхолина, то может возникнуть весьма неприятная болезнь Альцгеймера, которая сопровождается слабоумием.

Формирование нейронов головного мозга начинается еще до рождения человека, и в течение всего периода взросления происходит активное формирование и усложнение нервных связей. Долгое время считалось, что у взрослого человека новые нервные клетки появляться не могут, а вот процесс их отмирания неизбежен. Поэтому умственное развитие личности возможно только за счет усложнения нервных связей. Да и то в старости все обречены на снижение умственных способностей.

Но недавние исследования опровергли этот пессимистический прогноз. Швейцарские ученые доказали, что есть отдел головного мозга, который отвечает за рождение новых нейронов. Это гиппокамп, он ежедневно продуцирует до 1400 новых нервных клеток. А нам с вами остается только активнее включать их в работу головного мозга, получать и осмысливать новую информацию, тем самым создавая новые нервные связи и усложняя нейронную сеть.

psychologist.tips

функции и строение нервных клеток

Человеческий мозг – это центральная часть нервной системы. Здесь осуществляется управление всеми процессами, происходящими в организме, на основе информации, поступающей от внешнего мира.

Нейроны головного мозга – это структурные функциональные единицы нервной ткани, обеспечивающие способность живых организмов приспосабливаться к изменениям внешней среды. Человеческий мозг состоит из  нейронов.

Функции нейронов головного мозга:

  • передача информации об изменениях внешней среды;
  • запоминание информации на длительный срок;
  • создание образа внешнего мира на основе полученных сведений;
  • организация оптимального поведения человека.

Все эти задачи подчинены одной цели – обеспечению живому организму успеха в борьбе за существование.

В этой статье будут рассмотрены следующие особенности нейронов:

  • строение;
  • взаимосвязь между собой;
  • виды;
  • развитие в разные периоды жизни человека.

Также в конце статьи вас ждут рекомендации, как поддерживать нервные ткани в здоровом состоянии.

В левом полушарии мозга содержится на 200 000 000 нейронов больше, чем в правом.

Строение нервной клетки

Нейроны в мозге имеют неправильную форму, они могут быть похожи на листик или цветок, обладать различными бороздами и извилинами. Цветовая палитра также разнообразна. Ученые полагают, что существует взаимосвязь между цветом и формой клетки и ее назначением.

Например, рецептивные поля клеток проекционной области зрительной коры имеют вытянутую форму, это помогает им избирательно реагировать на отдельные фрагменты линий с различной ориентацией в пространстве.

Каждая клетка имеет тело и отростки. В мозговой ткани принято выделять серое и белое вещество. Тела нейронов вместе с глиальными клетками, обеспечивающими защиту, изоляцию и сохранение структуры нервной ткани, составляют серое вещество. Отростки, организованные в пучки в соответствии с функциональным назначением, – это белое вещество.

Соотношение нейронов и глии у человека равно 1:10.

Виды отростков:

  • аксоны – имеют удлиненный вид, на конце ветвятся на терминали – нервные окончания, которые необходимы для передачи импульса к другим клеткам;
  • дендриты – более короткие, чем аксоны, также имеют разветвленную структуру; через них нейрон получает информацию.

Благодаря такому строению нейроны в головном мозге «общаются» между собой и объединяются в нейронные сети, которые и образуют мозговую ткань. И дендриты, и аксоны постоянно растут. Эта пластичность нервной системы лежит в основе развития интеллекта.

Нерв – это скопление многочисленных аксонов, принадлежащих разным нервным клеткам.

Синаптические связи

В основе формирования нейронных сетей лежит электрическое возбуждение, которое состоит из двух процессов:

  • запуск электрического возбуждения от энергии внешних воздействий – происходит за счет особой чувствительности мембран, расположенных на дендритах;
  • запуск клеточной активности на основании полученного сигнала и воздействие на другие структурные единицы нервной системы.

Быстродействие нейронов исчисляется несколькими миллисекундами.

Нейроны связаны между собой посредством специальных структур – синапсов. Они состоят из пресинаптической и постсинаптической мембран, между которыми находится синаптическая щель, заполненная жидкостью.

По характеру действия синапсы могут быть возбуждающими и тормозными. Передача сигналов может быть химической и электрической.

В первом случае на пресинаптической мембране синтезируются нейромедиаторы, которые поступают на рецепторы постсинаптической мембраны другой клетки из специальных пузырьков – везикул. После их воздействия в соседний нейрон могут массированно поступать ионы определенного вида. Это происходит через калийные и натриевые каналы. В обычном состоянии они закрыты, внутри клетки находятся отрицательно заряженные ионы, а снаружи – положительно. Следовательно, на оболочке образуется разница напряжений. Это потенциал покоя. После попадания положительно заряженных ионов внутрь возникает потенциал действия – нервный импульс.

Баланс клетки восстанавливается с помощью специализированных белков – калиево-натриевых насосов.

Свойства химических синапсов:

  • возбуждение осуществляется только в одном направлении;
  • наличие задержки от 0,5 до 2 мс при передаче сигнала, связанной с длительностью процессов выделения медиатора, его передачи, взаимодействия с рецептором и образования потенциала действия;
  • может возникать утомление, вызванное истощением запаса медиатора или появлением стойкой деполяризации мембраны;
  • высокая чувствительность к ядам, лекарственным препаратам и другим биологически активным веществам.

В настоящее время известно более 100 нейромедиаторов. Примеры этих веществ – дофамин, норадреналин, ацетилхолин.

Для электрической передачи характерна узкая синаптическая щель и пониженное сопротивление между мембранами. В таком случае потенциал, созданный на пресинаптической мембране, вызывает распространение возбуждения на постсинаптической мембране.

Свойства электрических синапсов:

  • скорость передачи информации выше, чем в химических синапсах;
  • возможна как односторонняя, так и двусторонняя передача сигнала (в обратную сторону).

Также существуют смешанные синапсы, в них возбуждение может передаваться как с помощью нейромедиаторов, так и с помощью электрических импульсов.

Память включает в себя хранение и воспроизведение полученной информации. В результате обучения остаются так называемые следы памяти, а их наборы образуют энграммы – «записи». Нейронный механизм заключается в следующем: по цепи много раз проходят определенные импульсы, формируются структурные и биохимические изменения в синапсах. Этот процесс называется консолидацией. Многократное использование одних и тех же контактов создает специфические белки – это и есть следы памяти.

Особенности развития мозговой ткани

Структуры мозга продолжают формироваться до 3 лет. Масса мозга удваивается к концу первого года жизни ребенка.

Зрелость нервной ткани определяется степенью развития двух процессов:

  • миелинизация – образование изолирующих оболочек;
  • синаптогенез – формирование синаптических связей.

Миелинизация начинается на 4 месяце внутриутробной жизни с эволюционно более «старых» структур мозга, отвечающих за сенсорные и моторные функции. В системах, контролирующих скелетную мускулатуру, — незадолго до появления на свет младенца, и активно продолжается в течение первого года жизни. А в областях, связанных с высшими психическими функциями, такими как обучение, речь, мышление, миелинизация начинается лишь после рождения.

Именно поэтому в этот период особенно опасны инфекции и вирусы, оказывающие вредное воздействие на мозг. Это можно сравнить с автомобильной аварией: столкновение на маленькой скорости принесет меньший урон, чем на большой. Так и здесь – вмешательство в активный процесс созревания может нанести огромный вред и привести к печальным последствиям – ДЦП, олигофрении или задержке психического развития.

Стабилизация психофизиологических характеристик индивида происходит в 20 – 25 лет.

Процесс развития отдельной нервной клетки начинается с образования, имеющего специфическую электрическую активность. Его отростки, вытягиваясь, проникают в окружающие ткани и устанавливают синаптические контакты. Таким образом происходит иннервация (управление) всеми органами и системами организма. Данный процесс контролируется более чем половиной генов человека.

Клетки объединяются в особые связанные структуры – нейросети, которые выполняют конкретные функции.

Одно из научных предположений гласит, что иерархия структуры нейронов в головном мозге напоминает устройство Вселенной.

Развитие нейронов, их специализация, продолжается в течение всей жизни человека. У взрослого и младенца число нейронов приблизительно совпадает, но длина отростков и их количество отличается во много раз. Это связано с обучением и формированием новых связей.

Продолжительность существования нервных клеток и их хозяина чаще всего совпадает.

Виды нервных клеток

Каждый элемент в нейронной системе мозга выполняет определенную функцию. Рассмотрим, за что отвечают определенные виды нейронов.

Рецепторы

Большая часть рецепторных нейронов располагается в спинном мозге, их функция – передавать сигнал от рецепторов органов чувств в центральную нервную систему.

Командные нейроны

Здесь сходятся пути от клеток-детекторов, кратковременной и долговременной памяти и осуществляется принятие решения в ответ на входящий сигнал. Далее поступает команда в премоторные зоны, и формируется реакция.

Эффекторы

Они транслируют сигнал к органам и тканям. Эти нейроны имеют длинные аксоны. Мотонейроны – это эффекторные клетки, аксоны которых образуют нервные волокна, ведущие к мышцам. Эффекторные нейроны, регулирующие деятельность вегетативной нервной системы (к ней относятся обмен веществ, управление внутренними органами, дыхание, сердцебиение – все, что происходит без сознательного контроля), находятся за пределами головного мозга.

Промежуточные

Еще их называют контактными или вставочными – эти клетки являются связующим звеном между рецепторами и эффекторами.

Зеркальные нейроны

Данные нейроны обнаружены в различных участках центральной нервной системы. Считается, что эволюционно они появились для того, чтобы детеныши лучше и быстрее устраивались в окружающем мире.

Клетки были обнаружены в результате опыта с обезьянами. Животное доставало еду из кормушки специальными инструментами. Когда ученый делал то же самое, было выявлено, что у подопытной особи активируются определенные участки коры, как будто бы это делала она сама.

На работе зеркальных нейронов базируются эмпатия, социальные навыки, обучение, повторение, имитация. Способность прогнозировать тоже относится к этим клеткам.

Ученые установили: отчетливо представлять и делать – почти одно и то же. Такой метод психотерапии как визуализация построен на этом постулате.

Зеркальный нейроны – основа передачи культурного пласта от поколения к поколению и его наращивания. Например, обучаясь живописи, сначала мы повторяем уже существующие способы, то есть имитируем. А потом, на основе этого опыта, создаются оригинальные работы.

Нейроны новизны и тождества

Нейроны новизны впервые были обнаружены при исследовании лягушек, впоследствии были найдены и у человека. Эти клетки перестают отвечать на повторяющийся стимул. Изменение же сигнала, наоборот, провоцирует их активацию.

Клетки тождества определяют повторяющийся сигнал, что позволяет выдать ранее использовавшуюся реакцию, иногда даже опережая стимул – экстраполярный ответ.

Их совместное действие подчеркивает новизну, ослабляет влияние привычных стимулов и оптимизирует время формирования ответного поведения.

Заболевания, связанные с дефектами нервной ткани

В основе многих расстройств здоровья человека могут лежать различные нарушения нейронных связей головного мозга.

Аутизм

Ученые полагают, что аутизм связан с неразвитостью или дисфункцией зеркальных нейронов. Малыш, смотря на взрослого, не может понять поведение и эмоции другого человека и спрогнозировать его действия. Зарождается страх. Защитная реакция – замыкание в себе.

Болезнь Паркинсона

Причина нарушения двигательных функции при данном недуге – повреждение и гибель нейронов, продуцирующих дофамин.

Болезнь Альцгеймера

Одной из возможных причин является снижение производства нейромедиатора ацетилхолина. Второй вариант – накопление в нервной ткани амилоидных бляшек – патологического белкового налета.

Шизофрения

Одна из теорий гласит, что между клетками мозга шизофреника имеется нарушение контактов. Исследования показали, что у таких людей неправильно работают гены, отвечающие за выделение нейромедиаторов в синапсах. Еще одна версия – излишняя выработка дофамина. Третья теория происхождения заболевания – снижение скорости прохождения нервных импульсов вследствие повреждения миелиновых оболочек.

Нейродегеративные заболевания (связанные с гибелью нейронов) дают о себе знать тогда, когда большая часть клеток погибла, поэтому лечение начинается на поздних стадиях. Человек выглядит здоровым, признаков болезни нет, а опасный процесс уже запущен. Это происходит от того, что человеческий мозг очень пластичен и имеет мощные компенсаторные механизмы. Пример: когда умирают нейроны-производители дофамина при болезни Паркинсона, оставшиеся клетки продуцируют большее количество вещества. Также увеличивается чувствительность к нейромедиатору клеток, принимающих сигнал. Какое-то время эти процессы не дают проявляться симптомам болезни.

При недугах, вызванных аномалиями хромосом (синдром Дауна, синдром Вильямса), обнаруживаются патологические виды нервных клеток.

Как сохранить нервные клетки здоровыми

Сохранение нейронов в здоровом состоянии – залог счастливой жизни и возможности вести активный образ жизни в пожилом возрасте. Наши рекомендации помогут вам в этом.

  1. Интеллектуальная деятельность в течение жизни способствует сохранению работоспособности до старости. Необходимо давать нервным клеткам нагрузку, создавать новые нейронные связи и укреплять старые, тренировать мозг.
  2. Питаться нужно полезными продуктами, содержащими жиры, так как оболочка нейронов состоит, по сути, из жиров – липидов.
  3. Пить больше жидкости – мозг состоит на 75% из воды. По этой же причине не следует злоупотреблять алкоголем, так как он обезвоживает организм.
  4. Чтобы помочь нейронам головного мозга проснуться с утра, хорошо дать им небольшую разминку, например, разгадать кроссворд, вспомнить несколько слов иностранного языка, решить математическую задачу.
  5. Дышать свежим воздухом – 20% от вдыхаемого кислорода потребляет головной мозг.
  6. Физические упражнения улучшают кровообращение во всем организме, а кровь снабжает мозг кислородом.
  7. Сон не менее 7-9 часов в сутки. Когда мы спим, полученная за день информация систематизируется: всем известно, что Менделеев увидел периодическую систему химических элементов во сне. Если человек отдыхает недостаточно, ресурсы мозга будут истощаться.

Заключение

Пластичность нейронов головного мозга позволяет не только выполнять генетически заданные программы, но и выстраивать новые. По образу и подобию человеческой нервной системы ведутся работы в области создания искусственного интеллекта. Существует множество научных споров об этичности, возможностях и опасностях данных разработок. В настоящее время исследователи рассматривают новые концепции образования нервных связей, применяя сложнейшие математические методы. Человеческий мозг до сих пор таит в себе множество загадок, которые еще предстоит раскрыть ученым.

vsepromozg.ru

Типы нейронов

Число
клеточных типов неизвестно (не менее
100). Это множество, по числу элементов
превышающее даже иммунную систему
++597+. Классификации
нейронов многочисленны. Приведем
некоторые из них.

Классификация
по позиции
в нейронной цепочке,
часто
говорят по функциональному признаку.
Нейроны
можно также разделить на три типа:
чувствительные
(афферентные),
интернейроны
(вставочные),
двигательные
(эфферентные).

Афферентные
выполняют функцию получения и передачи
информации в вышележащие структуры
ЦНС, вставочные
— обеспечивают взаимодей­ствие между
нейронами ЦНС, эфферентные
— передают информацию в нижележащие
структуры ЦНС, в нервные узлы, лежащие
за пре­делами ЦНС, и в органы
организма.Функции афферентных нейронов
тесно связаны с функциями рецепторов.

Разделение
на афферентные и эфферентные нейроны
обозначают ещё как разделение по
направлению возбуждения
,
соответственно к центру и от центра
(периферии).

По
количеству отростков

ней­роны делят на: аполярные, униполярные
(истинные и псевдоуниполярные, биполярные
и мультиполярные. Строение нейронов в
значительной мере со­ответствует их
функциональному назначению. Или аполяры,
униполяры биполяры, мультиполяры.

Истинно
униполярные нейроны

находятся
только в мезэнцефалическом ядре
тройничного нерва. Эти
нейроны обеспе­чивают проприоцептивную
чувствительность жевательных мышц.

Псевдоуниполяр­ные
нейроны
,
на самом деле имеют два отростка (один
идет с пери­ферии от рецепторов, другой
— в структуры центральной нервной
системы). Оба отростка сливаются вблизи
тела клетки в единый отросток. Все эти
клетки располагаются в сенсорных
узлах
:
спинальных, тройничном и т. д. Они
обеспечивают восприятие болевой,
температурной, тактильной, проприоцептивной,
бароцептивной, вибрационной сигнализации.

Биполярные
нейроны

имеют один аксон и один дендрит. Нейроны
этого типа встречаются в основном в
периферических частях зрительной,
слуховой и обонятельной систем. Биполярные
нейроны дендритом связаны с рецептором,
аксоном — с нейроном следующего уровня
организации соответствующей сенсорной
системы.

Мультиполярные
нейроны

имеют несколько дендритов и один аксон.
В настоящее время насчитывают до 60
различных вариантов строения мультиполярных
нейронов, однако все они пред­ставляют
разновидности веретенообразных,
звездчатых, корзинчатых и пирамидных
клеток.

По
химической структуре выделяемого в
окончаниях медиатора
можно
выделить: холинергические,
пептидергические, норадреналинергические,
дофаминергические, серотонинергические
и др. Недостаточная
секреция дофамина приводит к развитию
паркинсонизма.

По
характеру воспринимемого и передаваемого
сигнала

или модальности
нейроны
делят механорецепторные, зрительные,
обонятельные.

По
числу воспринимемых

модальностей
нейроны
делят на моно-, би-, полисенсорные.

Мономодальные
(моносенсорные) нейроны

располагаются чаще в первичных
про­екционных зонах коры и реагируют
только на сигналы своей сенсорности.
Например, значительная
часть нейронов первичной зоны зрительной
области коры большого мозга реагирует
только на све­товое раздражение
сетчатки глаза.

Моносенсорные
нейроны подразделяют функционально по
их чувствительности к разным качествам
одного раздражителя. Так, отдельные
нейроны слуховой зоны коры большого
мозга могут ре­агировать на предъявления
тона 1000 Гц и не реагировать на тоны
другой частоты. Они называются
мономодальными.
Нейроны, реа­гирующие на два разных
тона, называются бимодальными,
на три и более — полимодальными.
Точнее
соответственно
моновалентными,
бивалентными
и
поливалентными.

Бимодальные
нейроны.
Чаще располагаются во
вторичных зонах коры какого-либо
анализатора и могут реагировать на
сигналы как своей, так и другой сенсорное.
Например, нейроны вторичной зоны
зрительной области коры большого мозга
реагируют на зри­тельные и слуховые
раздражения.

Полимодальные
нейроны.
Это чаще
всего нейроны ассоциативных зон мозга;
они способны реагировать на раздражение
слуховой, зрительной, кожной и других
рецептивных систем.

Нервные
клетки разных отделов нервной системы
могут быть активными вне воздействия
— фоновые, или фоновоактивные.
Другие нейроны проявляют импульсную
активность только в ответ на какое-либо
раздражение.

Фоновоактивные
нейроны делятся на тормозящиеся
— урежающие частоту разрядов и
возбуждающиеся
— учащающие частоту разрядов в ответ
на какое-либо раздражение. Фоновоактивные
ней­роны могут генерировать импульсы
непрерывно с некоторым замед­лением
или увеличением частоты разрядов — это
первый тип ак­тивности —
непрерывно-аритмичный.
Такие нейроны обеспечивают тонус нервных
центров. Фоновоактивные нейроны имеют
большое
значение
в поддержании уровня возбуждения коры
и других структур мозга. Число
фоновоактивных нейронов увеличивается
в состоянии бодрствования.

Нейроны
второго типа выдают группу импульсов
с коротким меж­импульсным интервалом,
после этого наступает период молчания
и вновь возникает группа, или пачка,
импульсов. Этот тип активности называется
пачечным.
Значение пачечного типа активности
заключа­ется в создании условий
проведения сигналов при снижении
функци­ональных возможностей проводящих
или воспринимающих структур мозга.
Межимпульсные интервалы в пачке равны
приблизительно 1— 3 мс, между пачками
этот интервал составляет 15—120 мс.

Третья
форма фоновой активности — групповая.
Групповой тип активности характеризуется
апериодическим появлением в фоне группы
импульсов (межимпульсные интервалы
составляют от 3 до 30 мс), сменяющихся
периодом молчания.

81.
Распространение возбуждения в нервных
центрах. Пространственная и временная
суммация. Облегчение, окклюзия
(Ч.С.Шеррингтон). Доминанта (А.А. Ухтомский).

Нервный
центр — совокупность структур центральной
нервной системы, координированная
деятельность которых обес­печивает
регуляцию отдельных функций организма
или опреде­ленный рефлекторный акт.

Представление
о структурно-функци­ональной основе
нервного центра обусловлено историей
развития учения о локализации функций
в центральной нервной системе. На смену
старым теориям об узкой локализации,
или эквипотенциальности, высших отделов
головного мозга, в частности коры
большого мозга, пришло современное
представление о динамической
локализации функций,

основанное на признании существо­вания
четко локализованных ядерных структур
нервных центров и менее определенных
рассеянных элементов анализаторных
си­стем мозга.

При
этом с цефализацией нервной системы
растут
удельный вес и значимость рассеянных
элементов нервного центра
,
внося существенные различия в анатомических
и физиологических границах нервного
центра. В результате функциональный
нервный центр может быть локализован
в разных анатомических структу­рах.
Например, дыхательный центр представлен
нервными клет­ками, расположенными
в спинном, продолговатом, промежуточном
мозге, в коре большого мозга.

Нервные
центры имеют ряд общих
свойств
,
что во многом определяется структурой
и функцией
синаптических
образований
.
Общие
свойства нервных центров они перекликаются
с особенностями (принципами) распространения
возбуждения в ЦНС [++491,74+].

  1. Односторонность
    проведения возбуждения
    .
    В рефлекторной дуге, включающей нервные
    центры, процесс возбуждения
    распро­страняется в одном направлении
    (от входа, афферентных путей к выходу,
    эфферентным путям).

  2. Суммация
    возбуждения.

    Аналогично
    можно говорить и о суммации
    торможения
    .
    В
    работе нервных центров значи­тельное
    место занимают процессы пространственной
    и временной
    суммации возбуждения, основным нервным
    субстратом которой яв­ляется
    постсинаптическая мембрана.

    1. На
      нейроне, в области его аксонного
      холмика, происходит интеграция событий,
      разыгрываю­щихся на отдельных
      участках мембраны нейрона. Если с
      оп­ределенным интервалом к нейрону
      в точку А приходят импульсы, они вызывают
      генерацию в этой области ВПСП. Если
      эти ВПСП не достигают критического
      уровня деполяризации, то потенциал
      действия не возникает.

    2. Процесс
      пространственной
      суммации

      афферентных потоков возбуждения
      облегчается наличием на мембране
      нервной клетки сотен и тысяч синаптических
      контактов. Приходящие
      в точку В, А, С нейрона (даже если они
      сами по себе — подпороговые), при
      одновременном появлении у данного
      нейрона мо­гут привести к его
      возбуждению при условии, что суммиро­ванный
      ВПСП достигает или превышает критический
      уро­вень деполяризации.

    3. Процессы
      временной
      суммации

      обусловлены суммацией ВПСП на
      постсинаптической мембране.Если частота
      следо­вания достаточно большая, то
      происходит в этом месте суммация ВПСП,
      при достижении ВПСП критического
      уровня де­поляризации возникает ПД,
      нейрон возбуждается. Это явле­ние
      носит название временной суммации
      (происходит суммация следов возбуждения
      во времени).

studfiles.net

Нейроны

Нейроны,
или нейроциты — специализированные
клетки нервной системы, ответственные
за рецепцию, обработку (процессинг)
стимулов, проведение импульса и влияние
на другие нейроны, мышечные или секреторные
клетки. Нейроны выделяют нейромедиаторы
и другие вещества, передающие информацию.
Нейрон является морфологически и
функционально самостоятельной единицей,
но с помощью своих отростков осуществляет
синаптический контакт с другими
нейронами, образуя рефлекторные дуги
— звенья цепи, из которой построена
нервная система.

Нейроны
отличаются большим разнообразием форм
и размеров. Диаметр тел клеток-зерен
коры мозжечка 4—6 мкм, а гигантских
пирамидных нейронов двигательной зоны
коры большого мозга — 130—150 мкм.

Обычно
нейроны
состоят

из тела (перикариона) и отростков
:
аксона и различного числа ветвящихся
дендритов.

Отростки
нейронов

  1. Аксон
    (нейрит)

    — отросток, по которому импульс идёт от
    тел нейронов
    .
    Аксон всегда один. Он образуется раньше
    других отростков.

  2. Дендриты
    — отростки, по которым импульс идёт к
    телу нейрона
    .
    Клетка может иметь несколько или даже
    много дендритов. Обычно дендриты
    ветвятся, с чем связано их название
    (греч. dendron — дерево).

Виды нейронов

По
количеству отростков различают:

  1. униполярные
    нейроны
    ,
    имеющие только аксон (у высших животных
    и человека обычно не встречаются, только
    нейробласты на промежуточной стадии
    дифференцировки в эмбриогенезе и в
    процессе регенерации),

  2. биполярные,
    имеющие аксон и один дендрит (в
    органах чувств
    :
    клетки сетчатки глаза, в спиральном
    ганглии внутреннего уха).

  • Иногда
    среди биполярных нейронов встречается
    псевдоуниполярный,
    от тела которого отходит один общий
    вырост — отросток, разделяющийся затем
    на дендрит и аксон. Псевдоуниполярные
    нейроны присутствуют в спинальных
    ганглиях
    .

    Различные
    типы нейронов:

    а
    — униполярный,

    б
    — биполярный,

    в
    — псевдоуниполярный,

    г
    — мультиполярный

  1. мультиполярные,
    имеющие аксон и много дендритов.
    Большинство нейронов мультиполярные.

По функции нейроциты делятся:


  1. афферентные
    (рецепторные, чувствительные,
    центростремительные)

    воспринимают и передают импульсы в ЦНС
    под воздействием внутренней или внешней
    среды;

  2. ассоциативные
    (вставочные)

    — соединяют нейроны разных типов;

  3. эффекторные
    (эфферентныеные) — двигательные (моторные)
    или секреторные

    — передают импульсы от ЦНС на ткани
    рабочих органов, побуждая их к действию.

Ядро
нейроцита

— обычно крупное, круглое, содержит
сильно деконденсированный хроматин.
Исключение составляют нейроны некоторых
ганглиев вегетативной нервной системы;
например, в предстательной железе и
шейке матки иногда встречаются нейроны,
содержащие до 15 ядер. В ядре имеется 1,
а иногда 2—3 крупных ядрышка. Усиление
функциональной активности нейронов
обычно сопровождается увеличением
объема (и количества) ядрышек.

В
цитоплазме имеется хорошо выраженная
гранулярная ЭПС, рибосомы, пластинчатый
комплекс и митохондрии.

Специальные
органеллы:

  1. Базофильное
    вещество (хроматофильная субстанция
    или тигроидное вещество, или
    вещество/субстанция/глыбки Ниссля).

    Располагается в перикарионе (теле) и
    дендритах (в аксоне (нейрите) — отсутствует).
    При окрашивании нервной ткани анилиновыми
    красителями выявляется в виде базофильных
    глыбок и зерен различных размеров и
    форм. Электронная микроскопия показала,
    что каждая глыбка хроматофильной
    субстанции состоит из цистерн гранулярной
    эндоплазматической сети, свободных
    рибосом и полисом. Это
    вещество активно синтезирует белок.

    Оно активно, находится в динамическом
    состоянии, его количество зависит от
    состояния НС. При активной деятельности
    нейрона базофилия глыбок возрастает.
    При перенапряжении или травме глыбки
    распадаются и исчезают, процесс назыается
    хромолиз
    (тигролиз).

  2. Нейрофибриллы,
    состоящие из нейрофиламентов и
    нейротубул. Нейрофибриллы — это
    фибриллярные структуры из спиралевидно
    закрученных белков; выявляются при
    импрегнации серебром в виде волокон,
    расположенных в теле нейроцита
    беспорядочно, а в отростках — параллельными
    пучками; функция:
    опорно-механическая (цитоскелет) и
    участвуют в транспорте веществ по
    нервному отростку.

Включения:
гликоген, ферменты, пигменты.

studfiles.net

Типы нервных клеток

Нейроны по своей структуре бывают:

а Биполярные нейроны

У этих нейронов один отросток (дендрит), ведущий в тело клетки, и аксон — ведущий из него. Этот тип нейронов в основном находится в сетчатке глаза.




б Однополярные нейроны

Однополярные нейроны (иногда их называют псевдооднополярными) изначально являются биполярными, но в процессе развития их два отростка соединяются в один. Они находятся в нервных узлах (ганглиях), преимущественно в периферической нервной системе, вдоль спинного мозга.

в Мультиполярные нейроны

Это самый частый тип нейронов. У них несколько (три или более) отростков (аксонов и дендритов), исходящих от тела клетки, и они находятся во всей центральной нервной системе. Хотя большинство из них имеет один аксон и несколько дендритов, есть и такие, у которых только одни дендриты.

г Промежуточные (вставочные) нейроны

Промежуточные (вставочные) нейроны, или ассоциативные нейроны, являются линией связи между сенсорными и двигательными нейронами. Промежуточные нейроны находятся в центральной нервной системе. Они мультиполярные и обычно имеют короткие отростки.

Нейрон Строение Функция
Центростремительные


(сенсорные нейроны)
Тело клетки находится в ПНС


Короткий аксон, ведущий в ЦНС


Длинные дендриты (разветвленные отростки) находятся в ПНС
Передает сигналы к ЦНС со всего тела
Центробежные


(двигательные нейроны)
Тело клетки находится в ЦНС


Длинный аксон, ведущий в ПНС


Короткие дендриты (разветвленные отростки) находятся в ЦНС
Отсылают сигналы от ЦНС к телу
Промежуточные нейроныДлинный или короткий аксон, находящийся в ЦНС


Короткие дендриты (разветвленные отростки) находятся в ЦНС
Передает импульсы между


центростремительными и центробежными нейронами

Нейроны по функциям

Нейроны (нервные клетки) образуют особую сеть. Самые простые из этих сетей контролируют рефлекторные действия (см. стр. 24-25), которые являются полностью автоматическими и бессознательными. Более сложные сети управляют сознательными движениями.

Рефлекторные дуги

Нервные пути часто называют нервным током, так как они несут электрический импульс. Импульс обычно появляется в одно- полярном центростремительном нейроне, который соединен с каким-либо рецептором в периферической нервной системе. Импульс передается вдоль аксона клетки в центральную нервную систему (ЦНС). Этот импульс может пройти через один аксон, а может, что более вероятно, через несколько центростремительных нейронов по пути. Центростремительные импульсы обычно попадают в ЦНС в спинном мозге через один из спинномозговых нервов.

Соединения

Как только импульс попадает в ЦНС, он переходит к другому нейрону. Из электрического импульса, проходящего между клетками, сигналы химическим путем передаются через крошечную щель, называемую синапсом. В самых простых рефлекторных путях центростремительный нейрон переходит к промежуточному нейрону. Затем он переходит к центробежному нейрону, который несет сигнал из ЦНС к эффектору (нервному окончанию) — например, мышце.

Более сложные пути включают прохождение импульсов через несколько частей ЦНС. В этом случае импульс передается сначала мультиполярному нейрону. (Большинство нейронов в ЦНС являются мультиполярными.) Отсюда импульс может пройти еще к нескольким мультиполярным нейронам, пока его будут перенаправлять к головному мозгу. Один из этих многополярных нейронов связан с одним или несколькими нервными окончаниями, которые передают ответный импульс через периферическую систему к соответствующему эффектору (мышце).

 И.А. Борисова

medbe.ru

Нейронауки для всех: клетки нервной системы

Наш мозг – огромный мегаполис, дорожная инфраструктура которого напоминает связи и проводящие пути; по ним с огромной скоростью и частотой подобно спорткарам проносятся сигналы, а разные линии жилых районов имитируют различные уровни организации головного мозга. Здесь есть разделение труда, «неравноправие», доминирование, свои валюты и множество других вещей, которые так или иначе напоминают жизнь людей в крупном городе-миллионнике. Наша нервная система состоит из приблизительно 86 миллиардов нервных, и почти такого же количества (85 миллиардов глиальных клеток и от ста до пятисот триллионов  синапсов (соединений). При этом она чрезвычайно разнолика и имеет в своём арсенале около сотни клеточных типов, которые способны строить тысячи связей между собой и создавать настоящие клеточные ансамбли.

В таком разнообразии очень легко запутаться, поэтому сегодня мы с вами разберём, что же именно отличает нервную ткань от других, какие клеточные варианты имеются в её составе, чем уникален нейрон и почему именно у нервной системы получается делать нас мыслящими.

Начнём с «внутренностей» нейрона

Как и любая нормальная клетка, он имеет ядро, цитоплазму и клеточную мембрану, которая обособляет его от внешней среды. Однако, это не всё. Нейрон – одна из немногих клеток, которая способна к генерации нервного импульса. О нём мы с вами поговорим в следующих выпусках, а сейчас стоит отметить лишь то, что такая возбудимость позволяет мозгу обрабатывать информацию, а нам — существовать.


У нейрона есть несколько характерных составных элементов, увидев которые вы никогда не спутаете его с другими клетками: это аксон— длинный отросток, по которому сигналы идут от перикариона, или тела, и дендриты – короткие отростки, по которым информация движется к нейрону от его соседей. Аксон, главный «кабель», покрыт «изоляцией»,  миелиновой оболочкой. Миелиновая оболочка аксонов есть только у позвоночных, а поскольку у нас явно есть позвоночник, то… Эту оболочку образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе — олигодендроциты, несколько другой тип клеток, нежели шванновские), между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье.

Перикарион имеет в своём составе обычные для живых эукариотических (ядерных) клеток субъединицы: собственно ядро, гранулярную эндоплазматическую сеть (ЭПС), которая синтезирует белки и прочие нужные клетке вещества и окрашивается при специальной окраске в тёмный цвет, которым покрываются глыбки тигроида или субстанции Ниссля, которые можно разглядеть даже в световой микроскоп. Также здесь есть аппарат Гольджи или «накопительный резервуар», митохондрии — «энергетические станции», лизосомы с «пищеварительными» ферментами, рибосомы, благодаря которым происходит синтез белков, а также целая сеть внутреннего цитоскелета, в которую входят микротрубочки, особые частицы — MAP (протеины, ассоциированные с микротрубочками), а также нейрофиламенты (типа промежуточных нитей). Благодаря этому скелету в клетке протекает очень важный для неё перенос веществ от центра к периферии, что особенно актуально для длинного (порой до нескольких десятков сантиметров) аксона, который питается также от тела. Такой ток бывает аксональным быстрым (до 100-1000 мм/сутки) и медленным (1-3 мм/сутки), дендритическим (75 мм/сутки), а также движущимся в обратном направлении — ретроградным.

А теперь представим, что перед нами микроскоп, а на предметном столике – покрашенный одним из специфических способов (по Нисслю или импрегнацией серебром) срез мозга. Как определить, где в переплетении отростков аксоны, а где – дендриты? Посмотреть нужно на тигроид, о котором мы упоминали. Дело в том, что он в виде гранул «рассыпан» по всему телу и коротким отросткам, но никогда вы его не найдёте в отростке длинном. А заканчивается он в районе аксонального холмика – структуры, близкой к началу аксона, в которой начинается генерация импульса.

Нейрон снаружи

Теперь, когда мы разобрались, что внутри у нервных клеток, посмотрим на их внешнюю организацию и попробуем разобраться в функциональном разделении.

Вспомните, что мы говорили про один длинный аксон и короткие дендриты. Так вот, этот вид нейронов называется мультиполярным, и он — самый «популярный», однако, есть и другие: униполярные (всего один отросток), биполярные (два отростка) и псевдоуниполярные (один отросток, который потом делится на два). Есть и вовсе аполярные(«голые») нейроны. Это предшественники нервных клеток – нейробласты.


Интересно, что униполярные нейроны представлены у человека всего лишь в одном виде: амакриновыми клетками сетчатки глаза. Псевдоуниполярные встречаются гораздо чаще и составляют основную массу спинномозговых чувствительных узлов, о которых мы поговорим чуть позже. Биполярных тоже не так много, и их пул, главным образом, приходится на обонятельные рецепторные клетки. Ну а с мультиполярными и так всё понятно – это универсальные представители нервной системы (например, мотонейроны спинного мозга).

Но, при всей своей важности, строение  – это всё же не функции. Каждый нейрон, представляя собой возбуждаемую и возбуждающую клетку (не путать с некими другими физиологическими процессами!), должен своим «настроением» делиться с соседями, иначе сигнал не дойдёт до адресата и не будет обработан и выполнен, что никого, конечно, не устраивает. Поэтому, подобно водителям, въезжающим на платную скоростную трассу, нейроны должны «заплатить», чтобы передать импульс дальше. Эта «валюта» существует в двух формах: электрической и химической. Второй случай — более частый.  А контрольно-пропускные пункты с кассами на автомагистралях воплощаются в синапсах — местах передачи возбуждения с клетки на клетку, то есть местах соединения нейронов. Такие места образуются на специальных выростах на дендритах: дендритных шипиках. Они чаще всего бывают трёх видов: пеньковые, грибовидные и тонкие шипики. Но бывают и другие

 

Дендритный шипик — с его шейкой и головкой


Тонкий, грибовидный и пеньковый шипики


Какие же бывают синапсы?

Реже бывает так. Благодаря ионным каналам в мембране и плотным контактам клеток электрический сигнал без особых усилий перескакивает с нейрона на нейрон и «летит» дальше — пробок нет, оплата принята, водитель доволен. Но это — электрический синапс, или, как еще умничают нейробиологи, эфапс.

Электрические синапсы (эфапсы). а — коннексон (двойная пора) в закрытом состоянии; b — коннексон в открытом состоянии; с — коннексон, встроенный в мембрану; d — мономер коннексина (белка, из которого сделаны коннексоны), е — плазматическая мембрана; f — межклеточное пространство; g — промежуток в 2-4 нанометра в электрическом синапсе; h — гидрофильный канал коннексона.


Но намного чаще случаются ситуации, когда синапс имеет достаточно широкую щель – порядка десятков микрон. То есть перед водителем река, а переправляться придётся на пароме. Здесь вступает в силу химическая «валюта» в виде нейромедиатора, который накапливается в везикулах (пузырьках) пресинаптической мембраны, затем вырабатывается в эквивалентоном силе пришедшего импульса количестве, «переплывает» щель и принимается рецепторами на другом берегу – постсинаптической мебране. Вот он, универсальный язык нервной системы, а нейроны по типу нейромедиаторов делятся на холинергические, адренергические, ГАМК-ергические и некоторые другие (об этом читайте в следующих выпусках). Исходя из этого, действие, в зависимости от типа нейромедиатора, бывает либо возбуждающим, либо тормозным.

Химический синапс


Но и это ещё не всё! Есть нейроны чувствительные, которые воспринимают сигнал из внешней или внутренней среды, затем следующие за ними в центральную нервную систему — вставочные, которые обеспечивают ассоциацию в нейронных сетях и могут быть в единичном или множественном числе, и двигательные, которые завершают сигнал действием и иннервируют сократительные или секреторные элементы. Также их ещё можно назвать афферентными (восходящими, двигающимися к центру), интернейронами и эфферентыми (нисходящими, двигающимися к периферии).

«Серый кардинал» нервной системы

Мы поговорили о нейронах, но нельзя забывать и о другой, не менее важной части нервной системы – нейроглии, тем более, что она составляет половину объёма головного мозга и принимает чуть ли не основное участие (как выяснилось в последние годы) в регуляции синаптической передачи, усиливая либо ослабляя сигнал.

Так вот, вся глия по строению, функциям и расположению делится на эпендимную(выстилающую внутреннее пространство цереброспинального канала и желудочков мозга), макро— и микроглию.

Макроглия, в свою очередь, имеет в своём распоряжении целый веер различных подтипов и для центральной, и для периферической нервной системы. Так, в головном мозге она представлена астроцитами, название которых говорит само за себя (большие звёздчатые клетки с большим количеством отростков, которые оплетают нейроны и сосуды), а также олигодендроцитами, которые обеспечивают внутримозговые волокна миелином (по сути, наматываются отростками на аксон — мы уже упомянули о них), многократно увеличивающим скорость передачи импульса. Периферическая нервная система в основном обходится лишь шванновскими клетками, которые также миелинизируют волокна, но уже за пределами центра, и расходятся по всему организму. И ещё сюда добавляются так называемые мантийные глиоциты или сателлиты, которые образуют оболочку (мантию) вокруг тел нейронов в ганглиях (узлах). Микроглия представляет из себя собственную фагоцитарную систему головного мозга и активируется в основном тогда, когда в нём появляются патологические процессы.

Астроцит


Но нужно всё-таки подчеркнуть важность глии. Работы по её изучению ведутся не так много лет – буквально два последних десятилетия. Появилась такая рабочая гипотеза (автор — Филип Хейдон [Philip G. Haydon]), согласно которой астроциты, обмениваясь сигналами, активируют нейроны, чьи аксоны находятся от них не только на близком расстоянии, но и сравнительно далеко. Эта активация в итоге способствует высвобождению нейромедиаторов. Таким образом, астроциты регулируют готовность даже отдалённых синапсов к изменению своей эффективности, что представляет собой клеточную основу процессов памяти и обучения.

Сотрудники из лаборатории Бена Барреса (Ben A. Barres, Стэнфордский университет) пошли дальше и открыли специфический белок тромбоспондин астроцитарного происхождения, который стимулирует образование синапсов. Сравнение же головного мозга показывает, что чем более высокое положение занимают животные на «эволюционной лестнице», тем больше в их мозге глиальных клеток по отношению к нервным. Так вот, возможно, что увеличение связности астроцитов может даже повышать способность животных к обучению. Однако это ещё только предстоит доказать.

На острие чувств

В завершение нашего небольшого путешествия внутрь нервной системы разберёмся в том, откуда берутся наши ощущения. Оказывается, здесь строение нервного окончания также имеет самое непосредственное отношение к процессу. Нервные окончания могут располагаться в тканях свободно, могут оканчиваться специальными сенсорными рецепторами, а могут «заключаться» в соединительнотканную капсулу.

Тактильные «граждане» располагаются в слоях соединительной ткани внутренних органов и кожи. Большинство из них – механорецепторы (тактильные, пластинчатые тельца), которые реагируют на какие-либо механические воздействия. Например, тельца Руффини реагируют на растяжение кожи, тельца Пачини – на давление. Некоторые окончания в эпидермисе «заточены» под регистрацию изменений температуры (тепло – тельца Руффини, холод – колбы Краузе). Есть даже такие рецепторы, которые могут определять изменения рН, рО2 и рСО2.

Поперечное сечение телец Руффини


Для суставов и мышц есть свои детекторы чувств. К ним относятся мышечные веретёна, сухожильные органы и чувствительные нервные окончания в капсуле суставов.

А дальше – только интереснее. Оставайтесь с нами!


Текст: Анна Хоружая

 

Читайте материалы нашего сайта в FacebookВКонтактеЯндекс-Дзен и канале в Telegram, а также следите за новыми картинками дня в Instagram.

neuronovosti.ru

6. Строение и функции нейронов

Нейрон (от
греч. neuron — нерв) — это структурно-функциональная
единица нервной системы. Эта клетка
имеет сложное строение, высоко
специализирована и по структуре содержит
ядро, тело клетки и отростки. В организме
человека насчитывается более 100 миллиардов
нейронов.

Функции
нейронов
 Как
и другие клетки, нейроны должны
обеспечивать поддержание собственной
структуры и функций, приспосабливаться
к изменяющимся условиям и оказывать
регулирующее влияние на соседние клетки.
Однако основная функция нейронов — это
переработка информации: получение,
проведение и передача другим клеткам.
Получение информации происходит через
синапсы с рецепторами сенсорных органов
или другими нейронами, или непосредственно
из внешней среды с помощью специализированных
дендритов. Проведение информации
происходит по аксонам, передача — через
синапсы.

Строение
нейрона

Тело
клетки
 Тело
нервной клетки состоит из протоплазмы
(цитоплазмы и ядра), снаружи ограничена
мембраной из двойного слоя липидов
(билипидный слой). Липиды состоят из
гидрофильных головок и гидрофобных
хвостов, расположены гидрофобными
хвостами друг к другу, образуя гидрофобный
слой, который пропускает только
жирорастворимые вещества (напр. кислород
и углекислый газ). На мембране находятся
белки: на поверхности (в форме глобул),
на которых можно наблюдать наросты
полисахаридов (гликокаликс), благодаря
которым клетка воспринимает внешнее
раздражение, и интегральные белки,
пронизывающие мембрану насквозь, в них
находятся ионные каналы.

Нейрон
состоит из тела диаметром от 3 до 100 мкм,
содержащего ядро (с большим количеством
ядерных пор) и органеллы (в том числе
сильно развитый шероховатый ЭПР с
активными рибосомами, аппарат Гольджи),
а также из отростков. Выделяют два вида
отростков: дендриты и аксон. Нейрон
имеет развитый цитоскелет, проникающий
в его отростки. Цитоскелет поддерживает
форму клетки, его нити служат «рельсами»
для транспорта органелл и упакованных
в мембранные пузырьки веществ (например,
нейромедиаторов). В теле нейрона
выявляется развитый синтетический
аппарат, гранулярная ЭПС нейрона
окрашивается базофильно и известна под
названием «тигроид». Тигроид проникает
в начальные отделы дендритов, но
располагается на заметном расстоянии
от начала аксона, что служит гистологическим
признаком аксона. Различается антероградный
(от тела) и ретроградный (к телу) аксонный
транспорт.

Дендриты
и аксон

Аксон
— обычно длинный отросток, приспособленный
для проведения возбуждения от тела
нейрона. Дендриты — как правило, короткие
и сильно разветвлённые отростки, служащие
главным местом образования влияющих
на нейрон возбуждающих и тормозных
синапсов (разные нейроны имеют различное
соотношение длины аксона и дендритов).
Нейрон может иметь несколько дендритов
и обычно только один аксон. Один нейрон
может иметь связи со многими (до 20-и
тысяч) другими нейронами. Дендриты
делятся дихотомически, аксоны же дают
коллатерали. В узлах ветвления обычно
сосредоточены митохондрии. Дендриты
не имеют миелиновой оболочки, аксоны
же могут её иметь. Местом генерации
возбуждения у большинства нейронов
является аксонный холмик — образование
в месте отхождения аксона от тела. У
всех нейронов эта зона называется
триггерной.

Синапс Синапс
— место контакта между двумя нейронами
или между нейроном и получающей сигнал
эффекторной клеткой. Служит для передачи
нервного импульса между двумя клетками,
причём в ходе синаптической передачи
амплитуда и частота сигнала могут
регулироваться. Одни синапсы вызывают
деполяризацию нейрона, другие —
гиперполяризацию; первые являются
возбуждающими, вторые — тормозящими.
Обычно для возбуждения нейрона необходимо
раздражение от нескольких возбуждающих
синапсов.

Структурная
классификация нейронов

На
основании числа и расположения дендритов
и аксона нейроны делятся на безаксонные,
униполярные нейроны, псевдоуниполярные
нейроны, биполярные нейроны и мультиполярные
(много дендритных стволов, обычно
эфферентные) нейроны.

Безаксонные
нейроны
 —
небольшие клетки, сгруппированы вблизи
спинного мозга в межпозвоночных ганглиях,
не имеющие анатомических признаков
разделения отростков на дендриты и
аксоны. Все отростки у клетки очень
похожи. Функциональное назначение
безаксонных нейронов слабо изучено.

Униполярные
нейроны
 —
нейроны с одним отростком, присутствуют,
например в сенсорном ядре тройничного
нерва в среднем мозге.

Биполярные
нейроны
 —
нейроны, имеющие один аксон и один
дендрит, расположенные в специализированных
сенсорных органах — сетчатке глаза,
обонятельном эпителии и луковице,
слуховом и вестибулярном ганглиях;

Мультиполярные
нейроны
 —
Нейроны с одним аксоном и несколькими
дендритами. Данный вид нервных клеток
преобладает в центральной нервной
системе

Псевдоуниполярные
нейроны
 —
являются уникальными в своём роде. От
тела отходит один отросток, который
сразу же Т-образно делится. Весь этот
единый тракт покрыт миелиновой оболочкой
и структурно представляет собой аксон,
хотя по одной из ветвей возбуждение
идёт не от, а к телу нейрона. Структурно
дендритами являются разветвления на
конце этого (периферического) отростка.
Триггерной зоной является начало этого
разветвления (т. е. находится вне тела
клетки). Такие нейроны встречаются в
спинальных ганглиях.

Функциональная
классификация нейронов
 По
положению в рефлекторной дуге различают
афферентные нейроны (чувствительные
нейроны), эфферентные нейроны (часть из
них называется двигательными нейронами,
иногда это не очень точное название
распространяется на всю группу эфферентов)
и интернейроны (вставочные нейроны).

Афферентные
нейроны
 (чувствительный,
сенсорный или рецепторный). К нейронам
данного типа относятся первичные клетки
органов чувств и псевдоуниполярные
клетки, у которых дендриты имеют свободные
окончания.

Эфферентные
нейроны
 (эффекторный,
двигательный или моторный). К нейронам
данного типа относятся конечные нейроны
— ультиматные и предпоследние –
неультиматные.

Ассоциативные
нейроны
 (вставочные
или интернейроны) — эта группа нейронов
осуществляет связь между эфферентными
и афферентными, их делят на комиссуральные
и проекционные (головной мозг).

Морфологическая
классификация нейронов
 Морфологическое
строение нейронов многообразно. В связи
с этим при классификации нейронов
применяют несколько принципов:

учитывают
размеры и форму тела нейрона,

количество
и характер ветвления отростков,

длину
нейрона и наличие специализированные
оболочки.

По
форме клетки, нейроны могут быть
сферическими, зернистыми, звездчатыми,
пирамидными, грушевидными, веретеновидными,
неправильными и т. д. Размер тела нейрона
варьирует от 5 мкм у малых зернистых
клеток до 120-150 мкм у гигантских пирамидных
нейронов. Длина нейрона у человека
составляет от 150 мкм до 120 см. По количеству
отростков выделяют следующие
морфологические типы нейронов: —
униполярные (с одним отростком) нейроциты,
присутствующие, например, в сенсорном
ядре тройничного нерва в среднем мозге;
— псевдоуниполярные клетки, сгруппированные
вблизи спинного мозга в межпозвоночных
ганглиях; — биполярные нейроны (имеют
один аксон и один дендрит), расположенные
в специализированных сенсорных органах
— сетчатке глаза, обонятельном эпителии
и луковице, слуховом и вестибулярном
ганглиях; — мультиполярные нейроны
(имеют один аксон и несколько дендритов),
преобладающие в ЦНС.

Развитие
и рост нейрона
 Нейрон
развивается из небольшой клетки —
предшественницы, которая перестаёт
делиться ещё до того, как выпустит свои
отростки. (Однако, вопрос о делении
нейронов в настоящее время остаётся
дискуссионным.) Как правило, первым
начинает расти аксон, а дендриты
образуются позже. На конце развивающегося
отростка нервной клетки появляется
утолщение неправильной формы, которое,
видимо, и прокладывает путь через
окружающую ткань. Это утолщение называется
конусом роста нервной клетки. Он состоит
из уплощенной части отростка нервной
клетки с множеством тонких шипиков.
Микрошипики имеют толщину от 0,1 до 0,2
мкм и могут достигать 50 мкм в длину,
широкая и плоская область конуса роста
имеет ширину и длину около 5 мкм, хотя
форма её может изменяться. Промежутки
между микрошипиками конуса роста покрыты
складчатой мембраной. Микрошипики
находятся в постоянном движении —
некоторые втягиваются в конус роста,
другие удлиняются, отклоняются в разные
стороны, прикасаются к субстрату и могут
прилипать к нему. Конус роста заполнен
мелкими, иногда соединёнными друг с
другом, мембранными пузырьками
неправильной формы. Непосредственно
под складчатыми участками мембраны и
в шипиках находится плотная масса
перепутанных актиновых филаментов.
Конус роста содержит также митохондрии,
микротрубочки и нейрофиламенты, имеющиеся
в теле нейрона. Вероятно, микротрубочки
и нейрофиламенты удлиняются главным
образом за счёт добавления вновь
синтезированных субъединиц у основания
отростка нейрона. Они продвигаются со
скоростью около миллиметра в сутки, что
соответствует скорости медленного
аксонного транспорта в зрелом нейроне.

Поскольку
примерно такова и средняя скорость
продвижения конуса роста, возможно, что
во время роста отростка нейрона в его
дальнем конце не происходит ни сборки,
ни разрушения микротрубочек и
нейрофиламентов. Новый мембранный
материал добавляется, видимо, у окончания.
Конус роста — это область быстрого
экзоцитоза и эндоцитоза, о чём
свидетельствует множество находящихся
здесь пузырьков. Мелкие мембранные
пузырьки переносятся по отростку нейрона
от тела клетки к конусу роста с потоком
быстрого аксонного транспорта. Мембранный
материал, видимо, синтезируется в теле
нейрона, переносится к конусу роста в
виде пузырьков и включается здесь в
плазматическую мембрану путём экзоцитоза,
удлиняя таким образом отросток нервной
клетки. Росту аксонов и дендритов обычно
предшествует фаза миграции нейронов,
когда незрелые нейроны расселяются и
находят себе постоянное место.

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о