Функции нейрона таблица – Строение нейрона: составные части нервной клетки

Структура и функции нейрона

Структурной единицей нервной системы является нервная клетка, или нейрон. Нейроны отличаются от других клеток организма многими особенностями. Прежде всего их популяция, насчитывающая от 10 до 30 млрд. (а быть может, и больше*) клеток, почти полностью «укомплектована» уже к моменту рождения, и ни один из нейронов, если он отомрет, не замещается новым. Принято считать, что после того, как человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается.

* Предположение, что нервная система состоит из 30 млрд. нейронов, сделал Пауэлл с сотрудниками (Powell et al., 1980), который показал, что у млекопитающих независимо от вида на 1 мм2 нервной ткани приходится около 146 тысяч нервных клеток. Общая же поверхность человеческого мозга составляет

22 дм2 (Changeux, 1983, р. 72).

Другая особенность нейронов состоит в том, что в отличие от клеток других типов они ничего не продуцируют, не секретируют и не структурируют; единственная их функция заключается в проведении нервной информации.

Структура нейрона

Существует много типов нейронов, структура которых варьирует в зависимости от выполняемых ими в нервной системе функций; сенсорный нейрон отличается по своему строению от моторного нейрона или нейрона мозговой коры (рис. А.28).

Рис. А.28. Различные типы нейронов.

Но какой бы ни была функция нейрона, все нейроны состоят из трех основных частей: тела клетки, дендритов и аксона.

Тело нейрона, как и всякой другой клетки, состоит из цитоплазмы и ядра. Цитоплазма нейрона, однако, особенно богата митохондриями, ответственными за выработку энергии, необходимой для поддержания высокой активности клетки. Как уже отмечалось, скопления тел нейронов образуют нервные центры в виде ганглия, в котором число клеточных тел исчисляется тысячами, ядра, где их еще больше, или, наконец, коры, состоящей из миллиардов нейронов. Тела нейронов образуют так называемое серое вещество.

Дендриты служат нейрону своего рода антеннами. Некоторые нейроны имеют много сотен дендритов, принимающих информацию от рецепторов или других нейронов и проводящих ее к телу клетки и ее единственному отростку другого типа

— аксону.

Аксон представляет собой часть нейрона, ответственную за передачу информации дендритам других нейронов, мышцам или железам. У одних нейронов длина аксона достигает метра, у других аксон очень короткий. Как правило, аксон ветвится, образуя так называемое терминальное дерево; на конце каждой ветви имеется синоптическая бляшка. Именно она и образует соединение (синапс) данного нейрона с дендритами или телами других нейронов.

Большинство нервных волокон (аксонов) покрыто оболочкой, состоящей из миелина — белого жироподобного вещества, выполняющего функции изоляционного материала. Миелиновая оболочка с регулярными промежутками в 1-2 мм прерывается перетяжками — перехватами Ранвье, которые увеличивают скорость пробегания нервного импульса по волокну, позволяя ему «перепрыгивать» с одного перехвата на другой, вместо того чтобы постепенно распространяться вдоль волокна. Сотни и тысячи собранных в пучки аксонов образуют нервные пути, которые благодаря миелину имеют вид белого вещества.

Нервный импульс

Информация поступает в нервные центры, перерабатывается там и затем передается эффекторам в виде

нервных импульсов, пробегающих по нейронам и соединяющим их нервным путям.

Независимо от того, какую информацию передают нервные импульсы, пробегающие по миллиардам нервных волокон, они ничем не отличаются друг от друга. Почему же в таком случае импульсы, идущие от уха, передают информацию о звуках, а импульсы от глаза — о форме или цвете предмета, а не о звуках или о чем-нибудь совсем ином? Да просто потому, что качественные различия между нервными сигналами определяются не самими этими сигналами, а тем местом, куда они приходят: если это мышца, она будет сокращаться или растягиваться; если это железа, она будет выделять секрет, уменьшать или прекращать секрецию; если это определенная область мозга, в ней будет формироваться зрительный образ внешнего стимула или же сигнал подвергнется расшифровке в виде, например, звуков. Теоретически достаточно было бы изменить ход нервных путей, например, часть зрительного нерва в зону мозга, ответственную за расшифровку звуковых сигналов, чтобы заставить организм «слышать глазами».

Потенциал покоя и потенциал действия

Нервные импульсы передают по дендритам и аксонам не сам внешний стимул как таковой и даже не его энергию. Внешний стимул лишь активирует соответствующие рецепторы, и эта активация преобразуется в энергию электрического потенциала, который создается на кончиках дендритов, образующих контакты с рецептором.

Возникающий при этом нервный импульс можно грубо сравнить с огнем, бегущим вдоль бикфордова шнура и поджигающим расположенный у него на пути патрон с динамитом; «огонь», таким образом, распространяется по направлению к конечной цели за счет небольших следующих друг за другом взрывов. Передача нервного импульса, однако, принципиально отличается от этого тем, что почти сразу же после прохождения разряда потенциал нервного волокна восстанавливается.

Нервное волокно в состоянии покоя можно уподобить маленькой батарейке; с наружной стороны его мембраны имеется положительный заряд, а с внутренней — отрицательный (рис. А.29), и этот

потенциал покоя преобразуется в электрический ток только при замыкании обоих полюсов. Именно это и происходит при прохождении нервного импульса, когда мембрана волокна на какое-то мгновение становится проницаемой и деполяризуется. Вслед за этой деполяризацией наступает период рефрактерности, в течение которого мембрана реполяризуется и восстанавливает способность к проведению нового импульса*. Так за счет последовательных деполяризаций и происходит распространение этого потенциала действия (т. е. нервного импульса) с постоянной скоростью, варьирующей в пределах от 0,5 до 120 метров в секунду в зависимости от типа волокна, его толщины и наличия или отсутствия у него миелиновой оболочки.

* Во время периода рефрактерности, длящегося около тысячной доли секунды, нервные импульсы по волокну проходить не могут. Поэтому за одну секунду нервное волокно способно провести не более 1000 импульсов.

Рис. А.29. Потенциал действия. Развитие потенциала действия, сопровождающееся изменением электрического напряжения (от —70 до + 40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увеличивается.

Закон «всё или ничего». Поскольку каждому нервному волокну присущ определенный электрический потенциал, распространяющиеся по нему импульсы независимо от интенсивности или каких-либо других свойств внешнего стимула всегда имеют одни и те же характеристики. Это означает, что импульс в нейроне может возникнуть только в том случае, если его активация, вызванная стимуляцией рецептора или импульсом от другого нейрона, будет превосходить некий порог, ниже которого активация неэффективна; но, если порог достигнут, сразу же возникает «полномерный» импульс. Этот факт получил название закона «всё или ничего».

Синаптическая передача

Синапс. Синапсом называют область соединения между окончанием аксона одного нейрона и дендритами или телом другого. Каждый нейрон может образовать до 800-1000 синапсов с другими нервными клетками, а плотность этих контактов в сером веществе мозга составляет боле 600 млн. на 1 мм

3 (рис. А.30)*.

*Это значит, что если за одну секунду отсчитывать по 1000 синапсов, то для их полного пересчета потребуется от 3 до 30 тысяч лет (Changeux, 1983, р. 75).

Рис. А.30. Синаптическое соединение нейронов (в середине — область синапса при большем увеличении). Терминальная бляшка пресинаптического нейрона содержит пузырьки с запасом нейромедиатора и митохондрии, доставляющие энергию, необходимую для передачи нервного сигнала.

Место перехода нервного импульса с одного нейрона на другой представляет собой, собственно, не точку контакта, а скорее узкий промежуток, называемый синоптической щелью. Речь идет о щели шириной от 20 до 50 нанометров (миллионных долей миллиметра), которая с одной стороны ограничена мембраной пресинаптической бляшки нейрона, передающего импульс, и с другой — постсинаптической мембраной дендрита или тела другого нейрона, принимающего нервный сигнал и затем передающего его дальше.

Нейромедиаторы. Именно в синапсах происходят процессы, в результате которых химические вещества, освобождаемые пресинаптической мембраной, передают нервный сигнал с одного нейрона на другой. Эти вещества, получившие название

нейромедиаторов (или просто медиаторов),-своего рода «мозговые гормоны» (нейрогормоны) — накапливаются в пузырьках синаптических бляшек и освобождаются, когда по аксону сюда приходит нервный импульс.

После этого медиаторы диффундируют в синаптическую щель и присоединяются к специфическим рецепторным участкам постсинаптической мембраны, т. е. к таким участкам, к которым они «подходят, как ключ к замку». В результате этого проницаемость постсинаптической мембраны изменяется, и таким образом сигнал передается с одного нейрона на другой; медиаторы могут также и блокировать передачу нервных сигналов на уровне синапса, уменьшая возбудимость постси-наптического нейрона.

Выполнив свою функцию, медиаторы расщепляются или нейтрализуются ферментами либо всасываются обратно в пресинаптическое окончание, что приводит к восстановлению их запаса в пузырьках к моменту прихода следующего импульса (рис. А.31).

Рис. А.31. la. Медиатор А, молекулы которого освобождаются из концевой бляшки нейрона I, связывается специфическими рецепторами на дендритах нейрона II. Молекулы X, которые по своей конфигурации не подходят к этим рецепторам, занять их не могут и потому не вызывают каких-либо синаптических эффектов.

1б. Молекулы M (например, молекулы некоторых психотропных препаратов) сходны по своей конфигурации с молекулами нейромедиатора А и поэтому могут связываться с рецепторами для этого медиатора, таким образом мешая ему выполнять свои функции. Например, ЛСД мешает серотонину подавлять проведение сенсорных сигналов.

2а и 2б. Некоторые вещества, называемые нейромодуляторами, способны воздействовать на окончание аксона, облегчая или подавляя высвобождение нейромедиатора.

Возбуждающая или тормозная функция синапса зависит главным образом от типа выделяемого им медиатора и от действия последнего на постсинаптическую мембрану. Некоторые медиаторы всегда оказывают только возбуждающее действие, другие — только тормозное (ингибирующее), а третьи в одних отделах нервной системы играют роль активаторов, а в других-ингибиторов.

Функции главных нейромедиаторов. В настоящее время известно несколько десятков этих нейрогормонов, но их функции изучены пока недостаточно. Сказанное, например, относится к ацетилхолину, который участвует в мышечном сокращении, вызывает замедление сердечного и дыхательного ритма и инактивируется ферментом ацетилхолинэстеразой*. Не вполне изучены и функции таких веществ из группы моноаминов, как норадреналин, отвечающий за бодрствование мозговой коры и учащение сердечного ритма, дофамин, присутствующий в «центрах удовольствия» лимбической системы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания, или серотонин, который регулирует сон и определяет объем информации, циркулирующей в сенсорных путях. Частичная инактивация моноаминов происходит в результате их окисления ферментом моноаминоксидазой. Этот процесс, обычно возвращающий активность мозга к нормальному уровню, в некоторых случаях может приводить к чрезмерному ее снижению, что в психологическом плане проявляется у человека в чувстве подавленности (депрессии).

* По-видимому, недостаток ацетилхолина в некоторых ядрах промежуточного мозга-одна из главных причин болезни Альцгеймера, а недостаток дофамина в скорлупе (одно из базальных ядер) может быть причиной болезни Паркиисона.

Гамма-аминомасляная кислота (ГАМК) представляет собой нейро-медиатор, выполняющий примерно ту же физиологическую функцию, что и моноаминоксидаза. Ее действие состоит главным образом в снижении возбудимости мозговых нейронов по отношению к нервным импульсам.

Наряду с нейромедиаторами существует группа так называемых нейромодуляторов, которые в основном участвуют в регуляции нервного ответа, взаимодействуя с медиаторами и видоизменяя их эффекты. В качестве примера можно назвать вещество Р и брадикинин, участвующие в передаче болевых йпгналов. Освобождение этих веществ в синапсах спинного мозга, однако, может быть подавлено секрецией эндорфинов и энкефалина, которая таким образом приводит к уменьшению потока болевых нервных импульсов (рис. А.31, 2а). Функции модуляторов выполняют и такие вещества, как фактор S, играющий, по-видимому, важную роль в процессах сна, холецистокинин, ответственный за чувство сытости, ангиотензин, регулирующий жажду, и другие агенты.

Нейромедиаторы и действие психотропных веществ. В настоящее время известно, что различные психотропные препараты действуют на уровне синапсов и тех процессов, в которых участвуют нейромедиаторы и нейромодуляторы.

Молекулы этих препаратов по своей структуре сходны с молекулами определенных медиаторов, что и позволяет им «обманывать» различные механизмы синаптической передачи. Таким образом они нарушают действие истинных нейромедиаторов, либо занимая их место на рецепторных участках, либо мешая им всасываться обратно в пресинаптические окончания или подвергаться разрушению специфическими ферментами (рис. А.31, 26).

Установлено, например, что ЛСД, занимая серотониновые рецепторные участки, мешает серотонину затормаживать приток сенсорных сигналов. Таким образом ЛСД открывает доступ к сознанию для самых разнообразных стимулов, непрерывно атакующих органы чувств.

Кокаин усиливает эффекты дофамина, занимая его место в рецепторных участках. Подобным же образом действуют морфин и другие опиаты, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторные участки для эндорфинов*.

* Несчастные случаи, связанные с передозировкой наркотиков, объясняются тем, что связывание чрезмерного количества, например, героина зндорфиновыми рецепторами в нервных центрах продолговатого мозга приводит к резкому угнетению дыхания, а иногда и к полной его остановке (Besson, 1988, Science et Vie, Hors série, n° 162).

Действие амфетаминов обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями. В результате накопление избыточного количества нейрогормона в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры.

Принято считать, что эффекты так называемых транквилизаторов (например, валиума) объясняются главным образом их облегчающим влиянием на действие ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора. Наоборот, как антидепрессанты действуют главным образом ферменты, инактивирую-шие ГАМК, или такие препараты, как, например, ингибиторы моноаминоксидазы, введение которых увеличивает количества моноаминов в синапсах.

Смерть от некоторых отравляющих газов наступает вследствие удушья. Такое действие этих газов связано с тем, что их молекулы блокируют секрецию фермента, разрушающего ацетилхолин. Между тем ацетилхолин вызывает сокращение мышц и замедление сердечного и дыхательного ритма. Поэтому его накопление в синаптических пространствах приводит к угнетению, а затем и полной блокаде сердечной и дыхательной функций и одновременному повышению тонуса всей мускулатуры.

Изучение нейромедиаторов еще только начинается, и можно ожидать, что в скором времени будут открыты сотни, а может быть и тысячи этих веществ, многообразные функции которых определяют их первостепенную роль в регуляции поведения.

studfiles.net

Структура и функции нейрона

Структурной единицей нервной системы является нервная клетка, или нейрон. Нейроны отличаются от других клеток организма многими особенностями. Прежде всего их популяция, насчитывающая от 10 до 30 млрд. (а быть может, и больше*) клеток, почти полностью «укомплектована» уже к моменту рождения, и ни один из нейронов, если он отомрет, не замещается новым. Принято считать, что после того, как человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается.

* Предположение, что нервная система состоит из 30 млрд. нейронов, сделал Пауэлл с сотрудниками (Powell et al., 1980), который показал, что у млекопитающих независимо от вида на 1 мм2 нервной ткани приходится около 146 тысяч нервных клеток. Общая же поверхность человеческого мозга составляет 22 дм2 (Changeux, 1983, р. 72).

Другая особенность нейронов состоит в том, что в отличие от клеток других типов они ничего не продуцируют, не секретируют и не структурируют; единственная их функция заключается в проведении нервной информации.

Структура нейрона

Существует много типов нейронов, структура которых варьирует в зависимости от выполняемых ими в нервной системе функций; сенсорный нейрон отличается по своему строению от моторного нейрона или нейрона мозговой коры (рис. А.28).

Рис. А.28. Различные типы нейронов.

Но какой бы ни была функция нейрона, все нейроны состоят из трех основных частей: тела клетки, дендритов и аксона.

Тело нейрона, как и всякой другой клетки, состоит из цитоплазмы и ядра. Цитоплазма нейрона, однако, особенно богата митохондриями, ответственными за выработку энергии, необходимой для поддержания высокой активности клетки. Как уже отмечалось, скопления тел нейронов образуют нервные центры в виде ганглия, в котором число клеточных тел исчисляется тысячами, ядра, где их еще больше, или, наконец, коры, состоящей из миллиардов нейронов. Тела нейронов образуют так называемое серое вещество.

Дендриты служат нейрону своего рода антеннами. Некоторые нейроны имеют много сотен дендритов, принимающих информацию от рецепторов или других нейронов и проводящих ее к телу клетки и ее единственному отростку другого типа — аксону.

Аксон представляет собой часть нейрона, ответственную за передачу информации дендритам других нейронов, мышцам или железам. У одних нейронов длина аксона достигает метра, у других аксон очень короткий. Как правило, аксон ветвится, образуя так называемое терминальное дерево; на конце каждой ветви имеется синоптическая бляшка. Именно она и образует соединение (синапс) данного нейрона с дендритами или телами других нейронов.

Большинство нервных волокон (аксонов) покрыто оболочкой, состоящей из миелина — белого жироподобного вещества, выполняющего функции изоляционного материала. Миелиновая оболочка с регулярными промежутками в 1-2 мм прерывается перетяжками — перехватами Ранвье, которые увеличивают скорость пробегания нервного импульса по волокну, позволяя ему «перепрыгивать» с одного перехвата на другой, вместо того чтобы постепенно распространяться вдоль волокна. Сотни и тысячи собранных в пучки аксонов образуют нервные пути, которые благодаря миелину имеют вид белого вещества.

Нервный импульс

Информация поступает в нервные центры, перерабатывается там и затем передается эффекторам в виде нервных импульсов, пробегающих по нейронам и соединяющим их нервным путям.

Независимо от того, какую информацию передают нервные импульсы, пробегающие по миллиардам нервных волокон, они ничем не отличаются друг от друга. Почему же в таком случае импульсы, идущие от уха, передают информацию о звуках, а импульсы от глаза — о форме или цвете предмета, а не о звуках или о чем-нибудь совсем ином? Да просто потому, что качественные различия между нервными сигналами определяются не самими этими сигналами, а тем местом, куда они приходят: если это мышца, она будет сокращаться или растягиваться; если это железа, она будет выделять секрет, уменьшать или прекращать секрецию; если это определенная область мозга, в ней будет формироваться зрительный образ внешнего стимула или же сигнал подвергнется расшифровке в виде, например, звуков. Теоретически достаточно было бы изменить ход нервных путей, например, часть зрительного нерва в зону мозга, ответственную за расшифровку звуковых сигналов, чтобы заставить организм «слышать глазами».

Потенциал покоя и потенциал действия

Нервные импульсы передают по дендритам и аксонам не сам внешний стимул как таковой и даже не его энергию. Внешний стимул лишь активирует соответствующие рецепторы, и эта активация преобразуется в энергию электрического потенциала, который создается на кончиках дендритов, образующих контакты с рецептором.

Возникающий при этом нервный импульс можно грубо сравнить с огнем, бегущим вдоль бикфордова шнура и поджигающим расположенный у него на пути патрон с динамитом; «огонь», таким образом, распространяется по направлению к конечной цели за счет небольших следующих друг за другом взрывов. Передача нервного импульса, однако, принципиально отличается от этого тем, что почти сразу же после прохождения разряда потенциал нервного волокна восстанавливается.

Нервное волокно в состоянии покоя можно уподобить маленькой батарейке; с наружной стороны его мембраны имеется положительный заряд, а с внутренней — отрицательный (рис. А.29), и этот потенциал покоя преобразуется в электрический ток только при замыкании обоих полюсов. Именно это и происходит при прохождении нервного импульса, когда мембрана волокна на какое-то мгновение становится проницаемой и деполяризуется. Вслед за этой деполяризацией наступает период рефрактерности, в течение которого мембрана реполяризуется и восстанавливает способность к проведению нового импульса*. Так за счет последовательных деполяризаций и происходит распространение этого потенциала действия (т. е. нервного импульса) с постоянной скоростью, варьирующей в пределах от 0,5 до 120 метров в секунду в зависимости от типа волокна, его толщины и наличия или отсутствия у него миелиновой оболочки.

* Во время периода рефрактерности, длящегося около тысячной доли секунды, нервные импульсы по волокну проходить не могут. Поэтому за одну секунду нервное волокно способно провести не более 1000 импульсов.

Рис. А.29. Потенциал действия. Развитие потенциала действия, сопровождающееся изменением электрического напряжения (от —70 до + 40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увеличивается.

Закон «всё или ничего». Поскольку каждому нервному волокну присущ определенный электрический потенциал, распространяющиеся по нему импульсы независимо от интенсивности или каких-либо других свойств внешнего стимула всегда имеют одни и те же характеристики. Это означает, что импульс в нейроне может возникнуть только в том случае, если его активация, вызванная стимуляцией рецептора или импульсом от другого нейрона, будет превосходить некий порог, ниже которого активация неэффективна; но, если порог достигнут, сразу же возникает «полномерный» импульс. Этот факт получил название закона «всё или ничего».

Синаптическая передача

Синапс. Синапсом называют область соединения между окончанием аксона одного нейрона и дендритами или телом другого. Каждый нейрон может образовать до 800-1000 синапсов с другими нервными клетками, а плотность этих контактов в сером веществе мозга составляет боле 600 млн. на 1 мм3 (рис. А.30)*.

*Это значит, что если за одну секунду отсчитывать по 1000 синапсов, то для их полного пересчета потребуется от 3 до 30 тысяч лет (Changeux, 1983, р. 75).

Рис. А.30. Синаптическое соединение нейронов (в середине — область синапса при большем увеличении). Терминальная бляшка пресинаптического нейрона содержит пузырьки с запасом нейромедиатора и митохондрии, доставляющие энергию, необходимую для передачи нервного сигнала.

Место перехода нервного импульса с одного нейрона на другой представляет собой, собственно, не точку контакта, а скорее узкий промежуток, называемый синоптической щелью. Речь идет о щели шириной от 20 до 50 нанометров (миллионных долей миллиметра), которая с одной стороны ограничена мембраной пресинаптической бляшки нейрона, передающего импульс, и с другой — постсинаптической мембраной дендрита или тела другого нейрона, принимающего нервный сигнал и затем передающего его дальше.

Нейромедиаторы. Именно в синапсах происходят процессы, в результате которых химические вещества, освобождаемые пресинаптической мембраной, передают нервный сигнал с одного нейрона на другой. Эти вещества, получившие название нейромедиаторов (или просто медиаторов),-своего рода «мозговые гормоны» (нейрогормоны) — накапливаются в пузырьках синаптических бляшек и освобождаются, когда по аксону сюда приходит нервный импульс.

После этого медиаторы диффундируют в синаптическую щель и присоединяются к специфическим рецепторным участкам постсинаптической мембраны, т. е. к таким участкам, к которым они «подходят, как ключ к замку». В результате этого проницаемость постсинаптической мембраны изменяется, и таким образом сигнал передается с одного нейрона на другой; медиаторы могут также и блокировать передачу нервных сигналов на уровне синапса, уменьшая возбудимость постси-наптического нейрона.

Выполнив свою функцию, медиаторы расщепляются или нейтрализуются ферментами либо всасываются обратно в пресинаптическое окончание, что приводит к восстановлению их запаса в пузырьках к моменту прихода следующего импульса (рис. А.31).

Рис. А.31. la. Медиатор А, молекулы которого освобождаются из концевой бляшки нейрона I, связывается специфическими рецепторами на дендритах нейрона II. Молекулы X, которые по своей конфигурации не подходят к этим рецепторам, занять их не могут и потому не вызывают каких-либо синаптических эффектов.

1б. Молекулы M (например, молекулы некоторых психотропных препаратов) сходны по своей конфигурации с молекулами нейромедиатора А и поэтому могут связываться с рецепторами для этого медиатора, таким образом мешая ему выполнять свои функции. Например, ЛСД мешает серотонину подавлять проведение сенсорных сигналов.

2а и 2б. Некоторые вещества, называемые нейромодуляторами, способны воздействовать на окончание аксона, облегчая или подавляя высвобождение нейромедиатора.

Возбуждающая или тормозная функция синапса зависит главным образом от типа выделяемого им медиатора и от действия последнего на постсинаптическую мембрану. Некоторые медиаторы всегда оказывают только возбуждающее действие, другие — только тормозное (ингибирующее), а третьи в одних отделах нервной системы играют роль активаторов, а в других-ингибиторов.

Функции главных нейромедиаторов. В настоящее время известно несколько десятков этих нейрогормонов, но их функции изучены пока недостаточно. Сказанное, например, относится к ацетилхолину, который участвует в мышечном сокращении, вызывает замедление сердечного и дыхательного ритма и инактивируется ферментом ацетилхолинэстеразой*. Не вполне изучены и функции таких веществ из группы моноаминов, как норадреналин, отвечающий за бодрствование мозговой коры и учащение сердечного ритма, дофамин, присутствующий в «центрах удовольствия» лимбической системы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания, или серотонин, который регулирует сон и определяет объем информации, циркулирующей в сенсорных путях. Частичная инактивация моноаминов происходит в результате их окисления ферментом моноаминоксидазой. Этот процесс, обычно возвращающий активность мозга к нормальному уровню, в некоторых случаях может приводить к чрезмерному ее снижению, что в психологическом плане проявляется у человека в чувстве подавленности (депрессии).

* По-видимому, недостаток ацетилхолина в некоторых ядрах промежуточного мозга-одна из главных причин болезни Альцгеймера, а недостаток дофамина в скорлупе (одно из базальных ядер) может быть причиной болезни Паркиисона.

Гамма-аминомасляная кислота (ГАМК) представляет собой нейро-медиатор, выполняющий примерно ту же физиологическую функцию, что и моноаминоксидаза. Ее действие состоит главным образом в снижении возбудимости мозговых нейронов по отношению к нервным импульсам.

Наряду с нейромедиаторами существует группа так называемых нейромодуляторов, которые в основном участвуют в регуляции нервного ответа, взаимодействуя с медиаторами и видоизменяя их эффекты. В качестве примера можно назвать вещество Р и брадикинин, участвующие в передаче болевых йпгналов. Освобождение этих веществ в синапсах спинного мозга, однако, может быть подавлено секрецией эндорфинов и энкефалина, которая таким образом приводит к уменьшению потока болевых нервных импульсов (рис. А.31, 2а). Функции модуляторов выполняют и такие вещества, как фактор S, играющий, по-видимому, важную роль в процессах сна, холецистокинин, ответственный за чувство сытости, ангиотензин, регулирующий жажду, и другие агенты.

Нейромедиаторы и действие психотропных веществ. В настоящее время известно, что различные психотропные препараты действуют на уровне синапсов и тех процессов, в которых участвуют нейромедиаторы и нейромодуляторы.

Молекулы этих препаратов по своей структуре сходны с молекулами определенных медиаторов, что и позволяет им «обманывать» различные механизмы синаптической передачи. Таким образом они нарушают действие истинных нейромедиаторов, либо занимая их место на рецепторных участках, либо мешая им всасываться обратно в пресинаптические окончания или подвергаться разрушению специфическими ферментами (рис. А.31, 26).

Установлено, например, что ЛСД, занимая серотониновые рецепторные участки, мешает серотонину затормаживать приток сенсорных сигналов. Таким образом ЛСД открывает доступ к сознанию для самых разнообразных стимулов, непрерывно атакующих органы чувств.

Кокаин усиливает эффекты дофамина, занимая его место в рецепторных участках. Подобным же образом действуют морфин и другие опиаты, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторные участки для эндорфинов*.

* Несчастные случаи, связанные с передозировкой наркотиков, объясняются тем, что связывание чрезмерного количества, например, героина зндорфиновыми рецепторами в нервных центрах продолговатого мозга приводит к резкому угнетению дыхания, а иногда и к полной его остановке (Besson, 1988, Science et Vie, Hors série, n° 162).

Действие амфетаминов обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями. В результате накопление избыточного количества нейрогормона в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры.

Принято считать, что эффекты так называемых транквилизаторов (например, валиума) объясняются главным образом их облегчающим влиянием на действие ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора. Наоборот, как антидепрессанты действуют главным образом ферменты, инактивирую-шие ГАМК, или такие препараты, как, например, ингибиторы моноаминоксидазы, введение которых увеличивает количества моноаминов в синапсах.

Смерть от некоторых отравляющих газов наступает вследствие удушья. Такое действие этих газов связано с тем, что их молекулы блокируют секрецию фермента, разрушающего ацетилхолин. Между тем ацетилхолин вызывает сокращение мышц и замедление сердечного и дыхательного ритма. Поэтому его накопление в синаптических пространствах приводит к угнетению, а затем и полной блокаде сердечной и дыхательной функций и одновременному повышению тонуса всей мускулатуры.

Изучение нейромедиаторов еще только начинается, и можно ожидать, что в скором времени будут открыты сотни, а может быть и тысячи этих веществ, многообразные функции которых определяют их первостепенную роль в регуляции поведения.

studfiles.net

Функции нейронов. Классификация нейронов.

Нейрон (нервная клетка) — основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка — аксона и нескольких коротких разветвленных отростков — дендритов. По дендритам импульсы следуют к телу клетки, по аксону — от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы. Нейрон, или нервная клетка — это функциональная единица нервной системы. Нейроны восприимчивы к раздражению, то есть способны возбуждаться и передавать электрические импульсы от рецепторов к эффекторам. По направлению передачи импульса различают афферентные нейроны ( сенсорные нейроны ), эфферентные нейроны ( двигательные нейроны ) и вставочные нейроны . Каждый нейрон состоит из сомы (клетки диаметром от 3 до 100 мкм, содержащей ядро и другие клеточные органеллы, погруженные в цитоплазму) и отростков — аксонов и дендритов. На основании числа и расположения отростков нейроны делятся на униполярные нейроны , псевдоуниполярные нейроны , биполярные нейроны и мультиполярные нейроны .

Основными функциями нервной клетки является восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция)

Особенности осуществления этих функций позволяют разделить все нейроны ЦНС на две большие группы:

1) Клетки, передающие информацию на большие расстояния (из одного отдела ЦНС в другой, от периферии к центру, от центра к исполнительному органу). Это крупные афферентные и эфферентные нейроны, имеющие на своём теле и отростках большое количество синапсов, как тормозящих, так и возбуждающих, и способные к сложным процессам переработки поступающих через них влияний.

2) Клетки, обеспечивающие межнейроальные связи в пределах органических нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.). Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синоптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.

Воспринимающая функция нейрона. Все раздражения, поступающие в нервную систему, передаются на нейрон через определённые участки его мембраны, находящиеся в области синаптических контактов. 6.2 Интегративная функция нейрона. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки.

Эффекторная функция нейрона. С появлением ПД, который в отличие от местных изменений мембранного потенциала (ВПСП и ТПСП) является распространяющимся процессом, нервный импульс начинает проводиться от тела нервной клетки вдоль по аксону к другой нервной клетке или рабочему органу, т.е. осуществляется эффекторная функция нейрона.

studfiles.net

Функции и строение нейрона :: SYL.ru

Клетки в организме человека дифференцированы в зависимости от видовой принадлежности. По сути, они являются структурными элементами различных тканей. Каждая максимально приспособлена к определенному виду деятельности. Строение нейрона является ярким тому подтверждением.

Нервная система

Большинство клеток организма имеют сходное строение. У них компактная форма, заключенная в оболочку. Внутри ядро и набор органелл, выполняющих синтез и обмен необходимых веществ. Однако строение и функции нейрона имеют отличия. Он является структурной единицей нервной ткани. Эти клетки обеспечивают связь между всеми системами организма.

Основу ЦНС составляют головной и спинной мозг. В двух этих центрах выделяют серое и белое вещество. Различия связаны с выполняемыми функциями. Одна часть получает сигнал от раздражителя и обрабатывает его, а другая отвечает за проведение необходимой ответной команды. За пределами главных центров нервная ткань образует пучки скоплений (узлы или ганглии). Они ветвятся, разводя проводящую сигналы сеть по всему организму (периферическая нервная система).

Нервные клетки

Чтобы обеспечивать множественные связи, нейрон имеет особое строение. Кроме тела, в котором сосредоточены главные органеллы, присутствуют отростки. Часть их короткие (дендриты), обычно их несколько, другой (аксон) – он один, и его длина в отдельных структурах может достигать 1 метра.

Строение нервной клетки нейрона имеет такой вид, чтобы обеспечивать наилучший взаимообмен информацией. Дендриты сильно ветвятся (как крона дерева). Своими окончаниями они взаимодействуют с отростками других клеток. Место их стыка называют синапсом. Там происходит прием-передача импульса. Его направление: рецептор – дендрит – тело клетки (сома) – аксон – реагирующий орган или ткань.

Внутреннее строение нейрона по составу органелл сходно с другими структурными единицами тканей. В нем присутствует ядро и цитоплазма, ограниченная мембраной. Внутри располагаются митохондрии и рибосомы, микротрубочки, эндоплазматическая сеть, аппарат Гольджи.

Строение и виды нейронов

От сомы клетки (основы) в большинстве случаев отходит несколько толстых ответвлений (дендритов). Они не имеют четкой границы с телом и покрыты общей мембраной. По мере отдаления стволы становятся тоньше, происходит их ветвление. В итоге самые тонкие их части имеют вид заостренных нитей.

Особое строение нейрона (тонкий и длинный аксон) предполагает необходимость защиты его волокна на всей протяженности. Поэтому сверху он покрыт оболочкой из шванновских клеток, образующих миелин, с перехватами Ранвье между ними. Такая структура обеспечивает дополнительную защиту, изолирует проходящие импульсы, дополнительно питает и поддерживает нити.

Аксон берет свое начало с характерной возвышенности (холмика). Отросток в итоге также ветвится, но это происходит не по всей его протяженности, а ближе к окончанию, в местах соединения с другими нейронами или с тканями.

Классификация

Нейроны разделяют на виды в зависимости от типа медиатора (посредника проводящего импульса) выделяемого на окончаниях аксона. Это может быть холин, адреналин и пр. От места расположения в отделах ЦНС они могут относиться к соматическим нейронам или к вегетативным. Различают воспринимающие клетки (афферентные) и передающие обратные сигналы (эфферентные) в ответ на раздражение. Между ними могут находиться итернейроны, отвечающие за обмен информацией внутри ЦНС. По типу ответной реакции клетки могут тормозить возбуждение или, наоборот, повышать его.

По состоянию их готовности различают: «молчащие», которые начинают действовать (передают импульс) только при наличии определенного вида раздражения, и фоновые, что постоянно осуществляют мониторинг (непрерывная генерация сигналов). В зависимости от типа воспринимаемой от сенсоров информации меняется и строение нейрона. В этой связи их классифицируют на бимодальные, с относительно простым ответом на раздражение (два взаимосвязанных вида ощущения: укол и — как результат — боль, и полимодальные. Это более сложная структура – полимодальные нейроны (специфическая и неоднозначная реакция).

Особенности, строение и функции нейрона

Поверхность мембраны нейрона покрыта маленькими выростами (шипами) для увеличения контактируемой зоны. Они в общей сложности могут занимать до 40% площади клетки. Ядро нейрона, как и у других видов клеток, несет в себе наследственную информацию. Нервные клетки не делятся митозом. Если связь аксона с телом будет разорвана, отросток отмирает. Однако если сома не была повреждена, она способна сгенерировать и вырастить новый аксон.

Хрупкое строение нейрона предполагает наличие дополнительной «опеки». Защитные, опорные, секреторные и трофические (питание) функции обеспечивает нейроглия. Ее клетки заполняют все пространство вокруг. До определенной степени она способствует восстановлению нарушенных связей, а также борется с инфекциями и вообще «заботится» о нейронах.

Клеточная мембрана

Этот элемент обеспечивает функцию барьера, отделяя внутреннюю среду от находящейся снаружи нейроглии. Тончайшая пленка состоит из двух слоев белковых молекул и находящихся между ними фосфолипидов. Строение мембраны нейрона предполагает наличие в ее структуре специфических рецепторов, отвечающих за узнавание раздражителей. Они обладают выборочной чувствительностью и при необходимости «включаются» при наличии контрагента. Связь внутренней и наружной сред происходит через канальцы, пропускающие ионы кальция или калия. При этом они открываются или закрываются под действием белковых рецепторов.

Благодаря мембране клетка имеет свой потенциал. При передаче его по цепочке происходит иннервация возбудимой ткани. Контакт мембран соседствующих нейронов происходит в синапсах. Поддержание постоянства внутренней среды – это важная составляющая жизнедеятельности любой клетки. И мембрана тонко регулирует концентрацию в цитоплазме молекул и заряженных ионов. При этом происходит транспорт их в необходимых количествах для протекания реакций метаболизма на оптимальном уровне.

www.syl.ru

4. Строение и функции нейрона.

Нейрон является основной структурной и функциональной единицей нервной системы. Нейрон состоит из тела( сомы) и отростков. Его покрывает плазматическая мембрана( неврилемма).Сому составляет ядро и цитоплазма. В цитоплазме расположены эндоплазматическая сеть (обеспечивает внутриклеточный транспорт веществ), рибосомы и комплекс Гольджи ( синтезируют гликопротеиды), митохондрии (поставщики энергии), лизосомы( элементы внутриклеточного пищеварения).

Выделяют два типа отростков: дендриты и аксоны.

Дендрит — короткий отросток, который проводит нервный импульс к телу нейрона.

Аксон – длинный отросток, проводящий нервный импульс от нейрона.

Функциями нейрона являются:

— восприятие, обработка и передача информации от рецепторов

— анализ, синтез и хранение информации

— формирование и передача сигналов на периферию

Нейрон характеризуется следующими свойствами:

— возбудимость

— проводимость

— лабильность

— тонус.

По количеству отростков нейроны делятся на униполярные, псевдоуниполярные, биполярные и мультиполярные. Большинство нейронов нервной системы человека является мультиполярными, они имеют один аксон и множество дендритов. Униполярные нейроны имеют один аксон, у биполярных – одни аксон и один дендрит. Такие нейроны характерны для сенсорных систем. Из тела псевдоуниполярного нейрона отходит один отросток, который сразу же после выхода делится на два, один из которых выполняет функции дендрита, а другой – аксона. Такие нейроны встречаются в чувствительных ганглиях.

В зависимости от формы тела различают зернистые (ганглиозные) нейроны, у которых тело имеет округлую форму; пирамидные с телом подобным треугольнику; звездчатые нейроны, веретенообразные нейроны.

Функционально нейроны подразделяются на чувствительные (афферентные), вставочные (интернейроны) и двигательные (исполнительные или эфферентные). Чувствительные нейроны воспринимают сигналы от внешней и внутренней среды организма. Исполнительные нейроны передают сигналы к мышцам или железам. Вставочные нейроны обеспечивают связь между другими нейронами.

5. Электрические процессы в нервной клетке при ее возбуждении. Реакция нейрона на повторное раздражение.

Нервная ткань, как мышечная и железистая, обладает свойством возбудимости. Возбудимость – это способность высоко специализирован- ных идифференцированных тканей отвечать на действие раздражителя появлением возбуждения. Возбудимые ткани могут находиться в трех возможных состояниях: физиологический покой; возбуждение; торможение. Физиологический покой – это отсутствие внешних проявлений деятельности. Он обеспечивает готовность ткани реагировать на воздействие. Возбуждение – ответная реакция надействие раздражителя, которая внешне проявляется в функции. Торможение – внутренне активный процесс, который проявляется снижением или прекращением функциональной активности. Возбуждение по нервному волокну передается электрическим путем. Ведущую роль в этом процессе играет мембрана волокна.

ЭЛЕКТРИЧЕСКИЕ ПРОЦЕССЫ В НЕРВНОЙ КЛЕТКЕ.

В состоянии покоя на мембране регистрируется электрический потенциал покоя. Внутренняя поверхность мембраны заряжена отрицательно, наружная — положительно. Величина потенциала покоя составляет-80 милливольт. Потенциал покоя определяется различной проницаемостью и концентрацией ионов калия и натрия по обе стороны мембраны (ионы калия преобладают внутри клетки, ионы натрия – снаружи).

Энергия для электрических потенциалов запасена в покоящейся клетке в виде градиентов концентрации ионов по обе стороны мембраны.

При возбуждении нервного волокна возникает быстрое колебание мембранного потенциала – так называемый потенциал действия. Амплитуда и длительность потенциала действия не зависят от силы раздражителя при условии, что эта сила превышает определенное пороговое значение. Поэтому говорят, что потенциал действия подчиняется закону « все или ничего». Во время потенциала действия ионы натрия устремляются внутрь нервного волокна, неся с собой положительный заряд. В результате знак заряда мембраны меняется: ее внутренняя поверхность становится положительной, наружная – отрицательной (фаза деполяризации). При этом проницаемость ионов натрия внутрь волокна прекращается, а наружу начинают выводиться ионы калия, вынося из клетки положительный заряд и восстанавливая тем самым первоначальной заряд мембраны (фаза реполяризации). После этого следует кратковременное колебание заряда вокруг значения потенциала покоя (следовый потенциал).

Состояние возбудимости нервного волокна после потенциала действия.

Если клетку повторно раздражать в период, когда потенциал действия еще не закончился, возбуждение клетки не возникнет ни при какой силе раздражителей. Такое состояние полной невозбудимости длится еще 1 миллисекунду после потенциала действия и называется абсолютным рефрактерным периодом. Это состояние объясняется тем, что для возникновения нового потенциала действия необходим выход ионов натрия наружу мембраны, который еще заблокирован предыдущим потенциалом дейстия. Если повторное раздражение наносится в период от 1 до 5 мс после потенциала действия, то новый потенциал возникает только при гораздо более сильном раздражении. Этот промежуток времени, в течение которого возбудимость клетки восстанавливается от нуля до нормы, называется относительным рефрактерным периодом. Через 15 мс после потенциала действия в течение непродолжительного времени возбудимость клетки выше нормы. Это период называется периодом экзальтации. После этого возбудимость возвращается к норме.

Абсолютный рефрактерный период определяет такое свойство нервной клетки, как лабильность — максимальное количество потенциалов действия, которое способна воспроизвести клетка за единицу времени в соответствии с ритмом раздражающих импульсов. Лабильность зависит от способности нервной клетки восстанавливать возбудимость после очередного потенциала действия. Для нервных клеток лабильность составляет 500 потенциалов в секунду. Максимальной лабильностью обладают нервные волокна, минимальной – синапсы.

studfiles.net

Функции центрального нейрона:

  1. нейрональная рецепция,

  2. интегративная,

  3. проводниковая,

  4. эффекторная,

  5. функция памяти.  

1-я функция центрального нейрона — нейрональная рецепция – это восприятие раздражений, способность возбудиться от пришедшего сигнала. Она возможна благодаря наличию на теле и отростках нейрона синапсов.

 Классификация межнейронных синапсов:

  • По характеру действия: возбуждающие и тормозные.

  • По местоположению (рис.1):аксосоматические, аксоаксональные, аксодендритические, дендросоматические.

  • По медиатору: адрен-, холин-, пурин-, гистамин-, серотонин-, ГАМК-, глицин-ергические…

Рис.1 Виды синапсов по местоположению                                               Рис.2 Виды синапсов по способу передачи сигнала (1-пресинапс, 2-синаптическая щель, 3-постсинапс)

Электрические синапсы бывают двух типов: 

Электрический синапс I типа – это щелевидное образование (размеры щели 2-3,5 нм, при том, что обычное межклеточное — 20 нм) с ионными мостиками-каналами белковой природы между двумя контактирующими клетками. Петли тока почти беспрепятственно перескакивают через щель по мостикам с одной клетки и возбуждают, т.е. генерируют ПД второй клетки. При деполяризации ток пропускается в одном направлении, при гиперполяризации — в обратном. Т.е. они могут быть как возбуждающими, так и тормозными. 

Электрический синапс II типа. Между пре- и постсинаптической мембранами щель отсутствует, и потенциал действия следует в обоих направлениях, оказывая только возбуждающий эффект. Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят через электрический синапс в обоих направлениях без синаптической задержки. Эфапсы синхронизируют действие значительных групп клеток. Например, эфапсы одновременно возбуждают или тормозят колонку интернейронов. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят через электрические синапсы в обоих направлениях без синаптической задержки. Электрические синапсы более древние и примитивные. В ЦНС встречаются реже химических синапсов, однако синхронизируют действие значительных групп клеток. Например, одновременно возбуждают или тормозят колонку интернейронов. 

Химические синапсы

Свойства химических синапсов и их отличие от электрических.

  • Односторонняя проводимость. Обусловлена морфологической ассиметрией химического синапса.

  • Наличие синаптической задержки (0,2-0,5 мс). Это время необходимо на выделение медиатора, его диффузию через щель, связывание с рецептором, развитие ПД. Хотя это и очень короткий промежуток времени, но когда речь идёт о рефлекторных дугах и нейронных сетях, состоящих из множества нейронов и синапсов, это латентное время суммируется и превращается в ощутимую величину – 300-500 мс. Чем больше количество синапсов в рефлекторной дуге, тем больше латентный период рефлекса.

  • Химические могут быть возбуждающими и тормозными, а электрические – только возбуждающими.

  • В химических существует явление отрицательной обратной связи – антидромный эффект. Выделяемый в щель нейромедиатор или нейромодулятор может регулировать выделение следующей порции медиатора из этого же пресинапса путём воздействия на специфические рецепторы пресинаптической мембраны, что снижает выделение следующей порции медиатора.

  • Сильная зависимость от температуры, химических (лекарственных) веществ.

  • Эффективность передачи в химическом синапсе зависит от интервалов следования сигналов через синапс

Если учащать подачу импульсов по аксону, то на каждый последующий ПД ответ постсинаптической мембраны (величина ВПСП или ТПСП) будет возрастать до некоторого предела. Это явление синаптического облегчения или потенциации. В основе его лежит накопление кальция внутри пресинапса (при большой частоте он не успевает выводиться).

 Но если частота следования ПД через синапс очень большая, то из-за того, что медиатор не успевает разрушиться или удалиться из синаптической щели, возникает стойкая деполяризация или катодическая депрессия – снижение эффективности синаптической передачи. Это явление синаптической депрессии.

 Если через синапс проходит долго и много импульсов, то в конечном итоге постсинаптическая мембрана может уменьшить ответ на выделение очередной порции медиатора (т.е. уменьшается величина ВПСП). Это явление десенситизации (или десенсибилизация) – утрата чувствительности. В определённой степени  десенситизация похожа на процесс рефрактерности (утрату возбудимости).

  • Химический синапс подвержен утомлению. В основе утомления лежат: а) истощение запаса медиатора, б) затруднение выделения медиатора, в) явление десенситизации. Т.о., утомление – это интегральный процесс. Синтез медиатора происходит в пресинапсе. Но необходимые для этого ферменты синтезируются  в соме. Из сомы в пресинапс они транспортируются по аксону со скоростью 6 мм/сутки, это является предпосылкой истощения запаса медиатора.

  • Рецепторы постсинаптических мембран являются белками. Синтезируются в эндоплазматическом ретикулюме клетки, проходят сортировку в аппарате Гольджи, потом встраиваются в постсинаптическую мембрану. Срок их жизни невелик. При нарушениях синтеза белка концентрация рецепторов снижается, что приводит к уменьшению функциональных возможностей синаптической передачи. При некоторых аутоимунных заболеваниях вырабатываются антитела к собственным рецепторам постсинаптической мембраны. Синтез рецепторов – контролируемый процесс. Например, если мышца денервирована, то число холинорецепторов в области постсинаптической мембраны снижается, но одновременно во внесинаптических областях возрастает концентрация холинорецепторов, что делает мышцу более чувствительной в отношении циркулирующего в крови ацетилхолина.

  • Существует ещё один путь воздействия медиатора на постсинаптическую структуру: за счёт активации рецептора меняется концентрация внутриклеточного посредника типа цАМФ, в результате меняется активность внутриклеточных протеаз,  как следствие происходит изменение функциональной активности клетки.

Начало формы

Конец формы

Начало формы

Конец формы

2-я функция центрального нейрона — интегративная – способность выбрать из множества сигналов, пришедших к нейрону, только один – наиболее важный. Биологическая значимость импульса определяется его силой и тем, в какую зону нейрона он пришёл. Предпочтение имеют сигналы, приходящие на детонаторные синапсы, расположенные вблизи аксонного холмика. При этом затухание постсинаптических потенциалов при распространении минимально. В случае отсутствия сигнала, пришедшего на детонаторный синапс, нейрон может отвечать на сигналы, приходящие на интегративные синапсы, более удалённые от аксонного холмика. Но тогда сигналов должно быть несколько, и возникающие постсинаптические потенциалы, для достижения КУД, должны суммироваться.

 

3-я функция центрального нейрона — проводниковая – способность провести через себя сигнал, причём сигнал распространяется в двух направлениях от места его возникновения: антероградно – от аксонного холмика к окончанию аксона и ретроградно – от аксонного холмика к телу и дендритам.

     К проводниковой функции относится и аксональный транспорт. Дело в том, что уникальная конфигурация нейрона, чрезвычайная удалённость его отростков от сомы создаёт необходимость транспорта веществ как от сомы к окончаниям (антероградный транспорт), так и в обратном направлении (ретроградный). Антероградно движутся синтезированные в соме белки, медиаторы (иногда заключённые в везикулы), митохондрии. С помощью ретроградного к соме перемещаются лизосомы, везикулы, а также захваченные терминалями аксонов периферические факторы роста, вирусы, токсины (вирус полиомелита, герпеса, столбнячный токсин – из раневой поверхности захватывается терминалями афферентных нейронов и в сому, где становится причиной судорог). Бывают нарушения аксонного транспорта, например, при алкогольном полиневрите. 

4-я функция центрального нейрона — эффекторная – способность передать этот сигнал далее – другому нейрону. Причём сигнал может быть как возбуждающим, так и тормозным. Это зависит от двух причин: медиатора и рецептора на постсинаптической мембране.

Принцип Дейла постулирует, что из всех окончаний всех коллатералей аксона выделяется несколько медиаторов, причём их набор постоянен для данной клетки. . Конечный эффект зависит от наличия типа рецептора к тому или иному медиатору на постсинаптической мембране. Именно тип рецептора будет определять какие вещества будут медиатором, а какие (все остальные) – играть роль модуляторов. Этим определяется многообразие эффектов от одного нейрона. Установлено, что иногда на постсинаптической мембране могут присутствовать рецепторы к двум медиаторам. Например, сначала один тип рецептора взаимодействует с ГАМК (тормозной медиатор) и «обнуляет» мембрану постсинаптического нейрона, а потом взаимодействует рецептор к ацетилхолину и вызывает возбуждающий эффект. В случае, если вещество игоает роль модулятора, то его контакт с соответствующими рецепторами не вызывает генерацию потенциалов на постсинаптической мембране, а только лишь изменяет (ослабляет или усиливает) её ответ.

Различают следующие медиаторы:

  • Простые эфиры – ацетилхолин.

  • Аминокислоты – глютаминовая, аспарагиновая, гамма-амино-масляная кислота (ГАМК), (антагонист ГАМК – пенициллин), глицин (антагонист глицина – стрихнин).

  • Моноамины: катехоламины (дофамин – норадреналин – адреналин), серотонин и гистамин.

  • Пептиды: опиоиды (эндорфины, энкефалины), субстанция Р, соматостатин, гастрин, либерины и статины, вазопрессин, холецистокинин и многие др.

Большинство перечисленных медиаторов могут быть как возбуждающими, так и тормозными. Характер влияния будет определяться свойствами постсинаптической мембраны, от, того, какие рецепторы на ней расположены.

Однако, ГАМК и глицин — всегда только тормозные медиаторы.

 

5-я функция центрального нейрона — функция памяти – после каждого возбуждения остаются следы памяти. Информация памяти может быть закодирована в виде электрофизиологических, химических и морфологических сигналов.

studfiles.net

2.2. Функции нейронов

Жизнь животного организма сосредоточена в клетке. У каждой клетки имеются общие (основные) функции, одинаковые с функ­циями других клеток, и специфические, свойственные в основном данному виду клеток.

А. Функции нейрона, идентичные общим функциям любых кле­ток организма. 1. Синтез тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений (анаболизм). При этом энергия не только расходуется, но и накапливается, по­скольку клетка усваивает органические соединения, богатые энер­гией (белки, жиры и углеводы, поступающие в организм с пищей). В клетку питательные вещества поступают, как правило, в виде продуктов гидролиза белков, жиров, углеводов (мономеров) — это моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур, подвер­гающихся распаду.

  1. Выработка энергии в результате катаболизма — совокупно­ сти процессов распада клеточных и тканевых структур и сложных соединений, содержащих энергию. Энергия необходима для обес­печения жизнедеятельности каждой живой клетки.

  2. Трансмембранный перенос веществ, обеспечивающий поступ­ление в клетку необходимых веществ и выделение из клетки мета­болитов и веществ, используемых другими клетками организма.

Б. Специфические функции нервных клеток ЦНС и перифериче­ского отдела нервной системы.

  1. Восприятие изменений внешней и внутренней среды организма. Эта функция осуществляется прежде всего с помощью перифери­ ческих нервных образований ™ сенсорных рецепторов (см. раз­ дел 1.1.6) и посредством шипикового аппарата дендритов и тела нейрона (см. раздел 2.1).

  2. Передача сигнала другим нервным клеткам и клеткам- эффекторам: скелетной мускулатуры, гладким мышцам внутрен­ них органов, сосудам, секреторным клеткам. Эта передача реали­ зуется с помощью синапсов (см. раздел 43).

  3. Переработка поступающей к нейрону информации посредст­ вом взаимодействия возбуждающих и тормозящих влияний при­ шедших к нейрону нервных импульсов (см. раздел 4.5-4.8).

  4. Хранение информации с помощью механизмов памяти (см. раз­ дел 6.6). Любой сигнал внешней и внутренней среды организма вначале преобразуется в пр»ОцеСс возбуждения, который является наиболее Характерным проявлением активности любой нервной клетки.

  1. Нервные импульсы обеспечивают связь между всеми клетками организма и регуляцию их функций (см. раздел 1.1).

  2. С помощью химических веществ нервные клетки оказывают трофическое влияние на эффекторные клетки организма (питание; см. раздел 1.1).

Жизнедеятельность самой нервной клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны (совокупность структурных элементов, образующих оболочку клетки), как и любой другой клетки организма.

2.3. Функции органелл нейрона

Органеллы нейрона находятся в гиалоплазме. состоящей из воды и находящихся в ней различных ионов и органических ве­ществ (глюкоза, аминокислоты, белки, фосфолипиды, холесте­рин). Гиалоплазма является внутренней средой нейрона, обеспе­чивающей взаимодействие всех клеточных структур друг с дру­гом посредством транспорта веществ, потребляемых и синте­зируемых клеткой. Гиалоплазма выполняет также функцию депо гликогена, липидов, пигментов. Большинство внутриклеточных органелл (мембранные органеллы: ядро, эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы) имеет собственные мембраны, построенные по тому же принципу, что и клеточные мембраны (см. раздел 2.3). Некоторые внутрикле­точные органеллы не имеют собственных мембран (немем­бранные органеллы: рибосомы, микротрубочки, микрофиламен-ты и промежуточные филаменты). Каждая органелла выполняет свои специфические функции.

А. Мембранные органеллы цитоплазмы. Эндоплазматический ретикулум представляет собой систему канальцев, уплощенных цистерн и мелких пузырьков. Строение мембраны ретикулума по­добно строению клеточной мембраны. Функции эндоплазматиче-ского ретикулума:

  • является резервуаром для ионов, в том числе Са2+ — одного из вторых посредников в реализации различных специфических реакций клеток, например в электромеханическом сопряже­ нии;

  • обеспечивает синтез и транспорт различных веществ, в том числе молекул белков, липидов;

  • обеспечивает детоксикацию (в клетках печени) ядовитых ве­- ществ, попадающих в организм с пищей или вдыхаемых с воз­ духом, а также биологически активных метаболитов, например простагландинов, желчных кислот, стероидных гормонов, подлежащих удалению из организма. Эти вещества в результате превращений выводятся с мочой и желчью в виде глюкуроновых и сульфуроновых соединений.

Аппарат Гольджи представляет собой систему упакованных уплощенных мешочков (цистерн), вакуолей и транспортных пузырьков. Его функции тесно связанны с функциями эндоплазматического ретикулума, от которого отделяются транспортные пузырьки и сливаются с аппаратом Гольджи. Он обеспечивает этап формирования и созревания всех секретируемых клеткой продуктов, в частности ферментов лизосом, белков, гликопротеидов клеточной мембраны. Секреторные пузырьки постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержание в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы – это отпочковавшиеся от аппарата Гольджи в виде мешочков участки, содержащие большое количество (более 50) различных кислых гидролаз. Основной функцией лизосом является переваривание поступающих в клетку белков, нуклеиновых кислот, и углеводов, жиров, фагоцитированных бактерий и клеток, гранул гикогена. Это внутриклеточная пищеварительная система. Отделившаяся от аппарата Гольджи лизосома называется первичной, она перемещается к пузырьку, образовавшемуся в результате пино- или фагоцитоза, и изливает свое содержимое в пузырек – образуется вторичная лизосома, в которой происходит расщепление содержащихся внутри нее веществ. Продукты расщепления поступают из вторичной лизосомы в гиалоплазму и используется для питания и обновления клетки. Остатки вторичных лизосом выделяются клеткой в процессе экзоцитоза. Лизосомы содержат лизоцим, растворяющий мембрану фагоцитированных бактериальных клеток; лактоферрин, связывающий железо, необходимое для поддержания роста бактерий, и тем самым угнетающий их размножение. Кислая среда лизосом (рН около 5) тормозит обмен веществ бактерий и ускоряет их гибель. Если мембрану лизосом повреждают ультразвук, свободные радикалы: супероксидный радикал О2 перекись водорода Н2 О2, то ферменты лизосом могут расщеплять клеточную мембрану. Кортизол защищает мембрану лизосом. Лизосомы обеспечивают регрессию физиологически увеличенной массы ткани: например, матки после родов, молочных желез после лактации.

Пероксисомы- разновидность лизосом, содержащих главным образом ферменты, катализирующие образование и разложение перекиси водорода – одного из важнейших окислителей в организме. Перекись водорода образуется под влиянием оксидаз, а расщепляется под действием пероксидаз или каталаз.

Митохондрии называют энергетическими станциями клеток, так как в них вырабатывается (освобождается) основное количество энергии из поступающих в организм питательных веществ. Они выполняют ряд других функций: например, участвуют в синтезе фосфолипидов, жирных кислот. Митохондрии представляют собой округлые, овальные или удлиненные образования с двойной мембраной – наружной и внутренней, каждая из которых состоит из бислоя липидно-белковых молекул. Внутренняя мембрана имеет выросты (кристы), обращенные внутрь митохондрий, содержимое последней называют матриксом. В кристах и внутренней мембране митохондрий содержатся дыхательные ферменты – переносчики электронов, в матриксе – ферменты цикла Кребса. В результате реакций обеих ферментных систем питательные вещества окисляются до конечных продуктов – воды и углекислого газа с освобождением аммиака и выделением энергии; энергия используется для синтеза АТФ. Молекулы АТФ диффундируют в гиалоплазму и используются клеткой для выполнения всех ее функций.

Число митохондрий в клетке весьма вариабельно – от 20 до 5* 10 в 5, оно может изменяться в каждой клетке и определяется ее потребностями.Обновление митохондрий и синтез новых обеспечивает ДНК и РНК, содержащимися в митохондриях. Матрикс митохондрий содержит также ферменты, участвующие в синтезе жирных кислот; имеются соли кальция и магния. Окислительные процессы происходят и в наружной мембране, но главную роль в выделении энергии играют внутренняя мембрана и матрикс. Энергия образуется и в гиалоплазме клетки в результате анаэробного расщипления глюкозы (гликолиз), при этом из каждой молекулы глюкозы образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты,которая, как жирные кислоты и аминокислоты, превращается в ацетил-коэнзим А (ацетил КоА). Последний поступает в митохондрий и окисляется до воды и СО2 с выделением энергии, которая запасается и расходуется также в виде АТФ. При этом из одной молекулы пировиноградной кислоты образуется 15 молекул АТФ. В итоге из одной молекулы глюкозы образуется 32 молекулы АТФ (или 38 в зависимости от путей доставки восстановительных эквивалентов в митохондрии). Тем не менее запасы АТФ в клетке невелики, они обеспечивают работу клетки только в течении нескольких секунд, Энергия накапливается также в виде других органических фосфатных соединений – фосфагенов (это характерно для скелетной и сердечной мышц, для нервных клеток). Наиболее важным фосфагеном является креатинфосфат, энергия которого идет на ресинтез израсходованной АТФ.

Рибосомы – плотные частицы, состоящие из рибосомных РНК (рРНК) и белка, причем рРНК составляет примерно 60% от всей массы рибосомы, функцией которой является синтез белков. Ри­босомы располагаются либо свободно в гиалоплазме, либо со­единены с эндоплазматическим ретикулумом. Отдельные рибосо­мы соединяются в более крупные агрегаты — полирибосомы, ко­торые образуются с помощью информационной РНК (иРНК) Информацию о синтезе белка приносят от ядра иРНК, аминокис­лоты доставляются транспортной РНК (тРНК). Рибосомы, сво­бодно лежащие в гиалоплазме, синтезируют белок для использо­вания самой клеткой, а рибосомы, связанные с эндоплазматиче­ским ретикулумом, синтезируют белок, который выводится из клетки, образуя межклеточное вещество, секреты. На рибосомах синтезируются различные по функции белки: ферменты, белки-переносчики, рецепторы, компоненты цитоскелета.

Б. Немембранные органеллы цитоплазмы — это фибриллярные компоненты, включающие микротрубочки, микрофиламенты и про­межуточные филаменты (микрофибриллы). Микротрубочки обра­зуются в результате полимеризации белка тубулина. В аксонах и дендритах нейронов микротрубочки участвуют в транспорте раз­личных веществ со скоростью 1-2 мм/сут -медленный транспорт и несколько сотен миллиметров в сутки — быстрый транспорт. Мик­рофиламенты — очень тонкие белковые нити диаметром 5-7 нм, состоят в основном из белка актина, близкого к мышечному; име­ется небольшое количество миозина, Промежуточные филаменты —это образованные макромолекулами белков нити. Белковый со­став промежуточных филаментов тканеспецифичен. Расположен­ные параллельно внутренней стороне клеточной мембраны и пронизывающие всю гиалоплазму, они образуют различные свя­зи между микротрубочками и микрофиламентами. Совокуп­ность фибриллярных компонентов образует цитоскелет. обеспе­чивающий поддержание формы клетки, внутриклеточное пере­мещение мембранных органелл и движение’некоторых клеток -их сократительную функцию. Разнонаправленное расположение различных элементов повышает жесткость и прочность цитоске­лета. Наиболее прочной составной частью цитоскелета являются промежуточные филаменты. Компоненты цитоскелета участвуют в организации митотических веретен, в процессах морфогенеза, обеспечивают движение мембраны клеток во время эндо- и экзо- цитоза.

В. Ядро несет генетическую информацию и обеспечивает регу­ляцию синтеза белка в клетке. Это самая большая органелла клетки. Ядро состоит из ядерной оболочки (мембрана), хрома­тина, ядрышка и кариоплазмы. Оболочка ядра представлена двумя мембранами, просвет между которыми сообщается с по­лостью эндоплазматического ретикулума. Оболочка имеет поры размером около 100 нм, что обеспечивает проход РНК, рибо-нуклеаз, обмен других веществ между ядром и цитоплазмой. На наружной ядерной мембране располагаются рибосомы, на кото­рых синтезируется белок. Ядрышко — внутриядерное округлое образование, не имеющее мембраны. В нем синтезируется рРНК и образуются рибосомы. В ядрышке имеются также белки и ДНК. Хроматин состоит из многих витков ДНК, связанных с белками — основными и кислыми. Хроматин содержит также РНК. Молекула ДНК по всей длине имеет отрицательный заряд, что обеспечивает присоединение к ней положительно заряжен­ных молекул белков. Комплекс ДНК и белков — это главные компоненты хромосомы — генетического аппарата клетки. Он выполняет две главные функции: генетическую (хранение и пе­редача генетической информации) и метаболическую — управле­ние синтезом белка, которое включает два этапа. Этап I — созда­ние на матрице ДНК иРНК, которая содержит код управления синтезом определенного белка. Кодом иРНК является последо­вательность расположения нуклеотидов, повторяющая генетиче­ский код ДНК. Этот этап называется транскрипцией. Этап II (трансляция) происходит на рибосомах: иРНК, синтезированная в ядре, через поры ядра поступает в рибосомы, где осуществля­ется сборка полипептида (белка) из аминокислот, доставляемых тРНК. Последняя синтезируется также в ядре клетки.

studfiles.net

Написать ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *